×

Fractional Sobolev’s spaces on time scales via conformable fractional calculus and their application to a fractional differential equation on time scales. (English) Zbl 1366.46023

Summary: Using conformable fractional calculus on time scales, we first introduce fractional Sobolev spaces on time scales, characterize them, and define weak conformable fractional derivatives. Second, we prove the equivalence of some norms in the introduced spaces and derive their completeness, reflexivity, uniform convexity, and compactness of some imbeddings, which can be regarded as a novelty item. Then, as an application, we present a recent approach via variational methods and critical point theory to obtain the existence of solutions for a \(p\)-Laplacian conformable fractional differential equation boundary value problem on time scale \(\mathbb{T}:T_\alpha(\left|T_\alpha \left(u\right)\right|^{p - 2} T_\alpha(u))(t) = \nabla F(\sigma(t), u(\sigma(t)))\), \(\Delta \text{-a.e.} t \in \left[a, b\right]_{\mathbb{T}}^{\kappa^2}\), \(u(a) - u(b) = 0\), \(T_\alpha(u)(a) - T_\alpha(u)(b) = 0\), where \(T_\alpha(u)(t)\) denotes the conformable fractional derivative of \(u\) of order \(\alpha\) at \(t\), \(\sigma\) is the forward jump operator, \(a, b \in \mathbb{T}\), \(0 < a < b\), \(p > 1\), and \(F : [0, T]_{\mathbb{T}} \times \mathbb{R}^N \rightarrow \mathbb{R}\). By establishing a proper variational setting, we obtain three existence results. Finally, we present two examples to illustrate the feasibility and effectiveness of the existence results.

MSC:

46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
34N05 Dynamic equations on time scales or measure chains
58E50 Applications of variational problems in infinite-dimensional spaces to the sciences

References:

[1] Hilger, S., Analysis on measure chains—a unified approach to continuous and discrete calculus, Results in Mathematics, 18, 1-2, 18-56 (1990) · Zbl 0722.39001 · doi:10.1007/bf03323153
[2] Hilger, S., Differential and difference calculus Unified!, Nonlinear Analysis: Theory, Methods & Applications, 30, 5, 2683-2694 (1997) · Zbl 0927.39002 · doi:10.1016/s0362-546x(96)00204-0
[3] Nordlund, G., Time-scales in futures research and forecasting, Futures, 44, 4, 408-414 (2012) · doi:10.1016/j.futures.2012.01.002
[4] Sheng, Q.; Fadag, M.; Henderson, J.; Davis, J. M., An exploration of combined dynamic derivatives on time scales and their applications, Nonlinear Analysis. Real World Applications. An International Multidisciplinary Journal, 7, 3, 395-413 (2006) · Zbl 1114.26004 · doi:10.1016/j.nonrwa.2005.03.008
[5] Zhang, H. T.; Li, Y. K., Almost periodic solutions to dynamic equations on time scales, Journal of the Egyptian Mathematical Society, 21, 1, 3-10 (2013) · Zbl 1277.34127 · doi:10.1016/j.joems.2012.10.004
[6] Deng, X.-H.; Wang, Q.-R.; Zhou, Z., Oscillation criteria for second order nonlinear delay dynamic equations on time scales, Applied Mathematics and Computation, 269, 834-840 (2015) · Zbl 1410.34269 · doi:10.1016/j.amc.2015.08.010
[7] Hong, S. H.; Peng, Y. Z., Almost periodicity of set-valued functions and set dynamic equations on time scales, Information Sciences, 330, 157-174 (2016) · Zbl 1390.34246 · doi:10.1016/j.ins.2015.10.008
[8] Zhang, S.-Y.; Wang, Q.-R.; Kong, Q., Asymptotics and oscillation of \(n\) th-order nonlinear dynamic equations on time scales, Applied Mathematics and Computation, 275, 324-334 (2016) · Zbl 1410.34273 · doi:10.1016/j.amc.2015.11.084
[9] Zhou, J. W.; Li, Y. K., Variational approach to a class of p-Laplacian systems on time scales, Advances in Difference Equations, 2013, article 297 (2013) · Zbl 1391.34147 · doi:10.1186/1687-1847-2013-297
[10] Li, Y. K.; Zhou, J. W., Existence of solutions for a class of damped vibration problems on time scales, Advances in Difference Equations, 2010 (2010) · Zbl 1216.34102
[11] Williams, P. A., Fractional calculus on time scales with Taylor’s theorem, Fractional Calculus and Applied Analysis, 15, 4, 616-638 (2012) · Zbl 1312.26059 · doi:10.2478/s13540-012-0043-y
[12] Benkhettou, N.; Hammoudi, A.; Torres, D. F. M., Existence and uniqueness of solution for a fractional Riemann-Liouville initial value problem on time scales, Journal of King Saud University—Science, 28, 1, 87-92 (2016) · doi:10.1016/j.jksus.2015.08.001
[13] Khalil, R.; Al Horani, M.; Yousef, A.; Sababheh, M., A new definition of fractional derivative, Journal of Computational and Applied Mathematics, 264, 65-70 (2014) · Zbl 1297.26013 · doi:10.1016/j.cam.2014.01.002
[14] Benkhettou, N.; Hassani, S.; Torres, D. F. M., A conformable fractional calculus on arbitrary time scales, Journal of King Saud University-Science, 28, 1, 93-98 (2016) · doi:10.1016/j.jksus.2015.05.003
[15] Agarwal, R. P.; Benchohra, M.; Hamani, S., A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions, Acta Applicandae Mathematicae, 109, 3, 973-1033 (2010) · Zbl 1198.26004 · doi:10.1007/s10440-008-9356-6
[16] Benson, D. A.; Wheatcraft, S. W.; Meerschaert, M. M., Application of a fractional advection-dispersion equation, Water Resources Research, 36, 6, 1403-1412 (2000) · doi:10.1029/2000WR900031
[17] Lakshmikantham, V.; Vatsala, A. S., Basic theory of fractional differential equations, Nonlinear Analysis. Theory, Methods & Applications. An International Multidisciplinary Journal. Series A: Theory and Methods, 69, 8, 2677-2682 (2008) · Zbl 1161.34001 · doi:10.1016/j.na.2007.08.042
[18] Salgado, G. H.; Aguirre, L. A., A hybrid algorithm for Caputo fractional differential equations, Communications in Nonlinear Science and Numerical Simulation, 33, 133-140 (2016) · Zbl 1510.65141 · doi:10.1016/j.cnsns.2015.08.024
[19] Zhang, S. Q., Existence of a solution for the fractional differential equation with nonlinear boundary conditions, Computers & Mathematics with Applications, 61, 4, 1202-1208 (2011) · Zbl 1217.34011 · doi:10.1016/j.camwa.2010.12.071
[20] Zhao, K. H.; Gong, P., Positive solutions of Riemann-Stieltjes integral boundary problems for the nonlinear coupling system involving fractional-order differential, Advances in Difference Equations, 2014, article 254 (2014) · Zbl 1348.34032 · doi:10.1186/1687-1847-2014-254
[21] Jiang, W. H., The existence of solutions for boundary value problems of fractional differential equations at resonance, Nonlinear Analysis. Theory, Methods & Applications. An International Multidisciplinary Journal. Series A: Theory and Methods, 74, 5, 1987-1994 (2011) · Zbl 1236.34006 · doi:10.1016/j.na.2010.11.005
[22] Jiao, F.; Zhou, Y., Existence of solutions for a class of fractional boundary value problems via critical point theory, Computers & Mathematics with Applications, 62, 3, 1181-1199 (2011) · Zbl 1235.34017 · doi:10.1016/j.camwa.2011.03.086
[23] Rabinowitz, P. H., Minimax method in critical point theory with applications to differential equations, Proceedings of the CBMS Regional Conference Series in Mathematics · Zbl 0609.58002
[24] Mawhin, J.; Willem, M., Critical Point Theory and Hamiltonian Systems. Critical Point Theory and Hamiltonian Systems, Applied Mathematical Sciences, 74 (1989), New York, NY, USA: Springer, New York, NY, USA · Zbl 0676.58017 · doi:10.1007/978-1-4757-2061-7
[25] Zhou, J. W.; Li, Y. K., Sobolev’s spaces on time scales and its application to a class of second order Hamiltonian systems on time scales, Nonlinear Analysis, 73, 1375-1388 (2010) · Zbl 1201.46035
[26] Jiao, F.; Zhou, Y., Existence results for fractional boundary value problem via critical point theory, International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 22, 4 (2012) · Zbl 1258.34015 · doi:10.1142/s0218127412500861
[27] Guseinov, G. S., Integration on time scales, Journal of Mathematical Analysis and Applications, 285, 1, 107-127 (2003) · Zbl 1039.26007 · doi:10.1016/S0022-247X(03)00361-5
[28] Agarwal, R. P.; Otero-Espinar, V.; Perera, K.; Vivero, D. R., Basic properties of Sobolev’s spaces on time scales, Advances in Difference Equations, 2006 (2006) · Zbl 1139.39022
[29] Zhong, C. K.; Fan, X. L.; Chen, W. Y., 2004 (Chinese), Lanzhou, China: Lanzhou University Press, Lanzhou, China
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.