×

Fractional calculus on time scales with Taylor’s theorem. (English) Zbl 1312.26059

Summary: We present a definition of the Riemann-Liouville fractional calculus for arbitrary time scales through the use of time scales power functions, unifying a number of theories including continuum, discrete and fractional calculus. Basic properties of the theory are introduced including integrability conditions and index laws. Special emphasis is given to extending Taylor’s theorem to incorporate our theory.

MSC:

26E70 Real analysis on time scales or measure chains
26A33 Fractional derivatives and integrals
Full Text: DOI

References:

[1] R.P. Agarwal, Certain fractional q-integrals and q-derivatives. Proc. Cambridge Philos. Soc. 66 (1969), 365-370. http://dx.doi.org/10.1017/S0305004100045060; · Zbl 0179.16901
[2] W.A. Al-Salam, Some fractional q-integrals and q-derivatives. Proc. Edinburgh Math. Soc. (2) 15 (1966/1967), 135-140. http://dx.doi.org/10.1017/S0013091500011469; · Zbl 0171.10301
[3] W.A. Al-Salam, q-analogues of Cauchy’s formulas. Proc. Amer. Math. Soc. 17 (1966), 616-621.; · Zbl 0145.06002
[4] G.A. Anastassiou, On right fractional calculus. Chaos Solitons Fractals 42, No 1 (2009), 365-376; doi: 10.1016/j.chaos.2008.12.013. http://dx.doi.org/10.1016/j.chaos.2008.12.013; · Zbl 1198.26006
[5] G.A. Anastassiou, Foundations of nabla fractional calculus on time scales and inequalities. Comput. Math. Appl. 59, No 12 (2010), 3750-3762; doi: 10.1016/j.camwa.2010.03.072. http://dx.doi.org/10.1016/j.camwa.2010.03.072; · Zbl 1198.26033
[6] D.R. Anderson, Taylor polynomials for nabla dynamic equations on time scales. Panamer. Math. J. 12, No 4 (2002), 17-27.; · Zbl 1026.34011
[7] F.M. Atici, P.W. Eloe, Fractional q-calculus on a time scale. J. Nonlinear Math. Phys. 14, No 3 (2007), 333-344; doi: 10.2991/jnmp.2007.14.3.4. http://dx.doi.org/10.2991/jnmp.2007.14.3.4; · Zbl 1157.81315
[8] A. Babakhani, V. Daftardar-Gejji, On calculus of local fractional derivatives. J. Math. Anal. Appl. 270, No 1 (2002), 66-79; doi: 10.1016/S0022-247X(02)00048-3. http://dx.doi.org/10.1016/S0022-247X(02)00048-3; · Zbl 1005.26002
[9] N. Bastos, D. Mozyrska, D. Torres, Fractional derivatives and integrals on time scales via the inverse generalized Laplace transform. Int. J. Math. Comput. 11, No J11 (2011), 1-9.;
[10] M. Bohner, G.Sh. Guseinov, Improper integrals on time scales. Dynam. Systems Appl. 12, No 1-2 (2003), 45-65.; · Zbl 1058.39011
[11] M. Bohner, G.Sh. Guseinov, Riemann and Lebesgue integration. In: Advances in Dynamic Equations on Time Scales, Birkhäuser, Boston, MA (2003), 117-163. http://dx.doi.org/10.1007/978-0-8176-8230-9_5;
[12] M. Bohner, G.Sh. Guseinov, Multiple Lebesgue integration on time scales. Adv. Difference Equ. 2006, Art. ID 026391 (2006), 1-12; doi: 10.1155/ADE/2006/26391.; · Zbl 1139.39023
[13] M. Bohner, H. Luo, Singular second-order multipoint dynamic boundary value problems with mixed derivatives. Adv. Difference Equ. 2006, Art. ID 054989 (2006), 1-15; doi: 10.1155/ADE/2006/54989.; · Zbl 1139.39024
[14] M. Bohner, A. Peterson, Dynamic Equations on Time Scales. Birkhäuser Boston Inc., Boston, MA (2001); doi: 10.1007/978-1-4612-0201-1. http://dx.doi.org/10.1007/978-1-4612-0201-1; · Zbl 0993.39010
[15] A. Cabada, D.R. Vivero, Criterions for absolute continuity on time scales. J. Difference Equ. Appl. 11, No 11 (2005), 1013-1028; doi: 10.1080/10236190500272830. http://dx.doi.org/10.1080/10236190500272830; · Zbl 1081.39011
[16] A. Cabada, D.R. Vivero, Expression of the Lebesgue Δ-integral on time scales as a usual Lebesgue integral: Application to the calculus of Δ-antiderivatives. Math. Comput. Modelling 43, No 1-2 (2006), 194-207; doi: 10.1016/j.mcm.2005.09.028. http://dx.doi.org/10.1016/j.mcm.2005.09.028; · Zbl 1092.39017
[17] M. Caputo, Linear models of dissipation whose Q is almost frequency independent, II. Geophys. J. R. Astr. Soc. 13, No 5 (1967), 529-539; Reprinted in: Fract. Calc. Appl. Anal. 11, No 1 (2008), 4-14. http://dx.doi.org/10.1111/j.1365-246X.1967.tb02303.x; · Zbl 1210.65130
[18] J. Čermák, L. Nechvátal, On (q, h)-analogue of fractional calculus. J. Nonlinear Math. Phys. 17, No 1 (2010), 51-68. doi: 10.1142/S1402925110000593 http://dx.doi.org/10.1142/S1402925110000593; · Zbl 1189.26006
[19] J.B. Díaz, T.J. Osler, Differences of fractional order. Math. Comp. 28 (1974), 185-202. http://dx.doi.org/10.2307/2005825; · Zbl 0282.26007
[20] R. Díaz, E. Pariguan, On hypergeometric functions and Pochhammer k-symbol. Divulg. Mat. 15, No 2 (2007), 179-192.; · Zbl 1163.33300
[21] M.M. Džrbašjan, A.B. Nersesyan, Criteria of expansibility of functions in Dirichlet series. Izv. Akad. Nauk Armyan. SSR. Ser. Fiz.-Mat. Nauk 11, No 5 (1958), 85-106.; · Zbl 0086.05701
[22] H.L. Gray, N.F. Zhang, On a new definition of the fractional difference, Math. Comp. 50, No 182 (1988), 513-529 doi: 10.2307/2008620 http://dx.doi.org/10.1090/S0025-5718-1988-0929549-2; · Zbl 0648.39002
[23] G.Sh. Guseinov, Integration on time scales. J. Math. Anal. Appl. 285, No 1 (2003), 107-127. doi: 10.1016/S0022-247X(03)00361-5 http://dx.doi.org/10.1016/S0022-247X(03)00361-5; · Zbl 1039.26007
[24] G.Sh. Guseinov, B. Kaymakçalan, Basics of Riemann delta and nabla integration on time scales. J. Difference Equ. Appl. 8, No 11 (2002), 1001-1017. doi: 10.1080/10236190290015272 http://dx.doi.org/10.1080/10236190290015272; · Zbl 1023.39009
[25] G.H. Hardy, Riemann’s form of Taylor’s series. J. London Math. Soc. 20 (1945), 48-57. http://dx.doi.org/10.1112/jlms/s1-20.1.48; · Zbl 0063.01925
[26] J.R.M. Hosking, Fractional differencing. Biometrika 68, No 1 (1981), 165-176. doi: 10.1093/biomet/68.1.165 http://dx.doi.org/10.1093/biomet/68.1.165; · Zbl 0464.62088
[27] G. Jumarie, Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results. Comput. Math. Appl. 51, No 9-10 (2006), 1367-1376. doi: 10.1016/j.camwa.2006.02.001 http://dx.doi.org/10.1016/j.camwa.2006.02.001; · Zbl 1137.65001
[28] V. Kac, P. Cheung, Quantum Calculus. Springer-Verlag, New York (2002); doi: 10.1007/978-1-4613-0071-7. http://dx.doi.org/10.1007/978-1-4613-0071-7; · Zbl 0986.05001
[29] V. Kiryakova, Generalized Fractional Calculus and Applications. Longman Scientific Techn. & J. Wiley, Harlow — N. York (1994).; · Zbl 0882.26003
[30] K.M. Miller, B. Ross, Fractional difference calculus. In: Univalent Functions, Fractional Calculus, and Their Applications (Kōriyama, 1988), Horwood, Chichester (1989), 139-152.; · Zbl 0693.39002
[31] K.M. Miler, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations. John Wiley & Sons Inc., New York (1993).; · Zbl 0789.26002
[32] M. Néel, A. Abdennadher, J. Solofoniaina, A continuous variant for Grünwald-Letnikov fractional derivatives. Phys. A. 387, No 12 (2008), 2750-2760; doi: http://dx.doi.org/10.1016/j.physa.2008.01.090. http://dx.doi.org/10.1016/j.physa.2008.01.090;
[33] Z.M. Odibat, N.T. Shawagfeh, Generalized Taylor’s formula. Appl. Math. Comput. 186, No 186 (2007), 286-293; doi: 10.1016/j.amc.2006.07.102. http://dx.doi.org/10.1016/j.amc.2006.07.102; · Zbl 1122.26006
[34] K.B. Oldham, J. Spanier, The Fractional Calculus. Academic Press, New York — London (1974).; · Zbl 0292.26011
[35] M.D. Ortigueira, The fractional quantum derivative and its integral representations. Commun. Nonlinear Sci. Numer. Simul. 15, No 4 (2010), 956-962; doi: 10.1016/j.cnsns.2009.05.026. http://dx.doi.org/10.1016/j.cnsns.2009.05.026; · Zbl 1221.26011
[36] T.J. Osler, Taylor’s series generalized for fractional derivatives and applications. SIAM J. Math. Anal. 2 (1971), 37-48. http://dx.doi.org/10.1137/0502004; · Zbl 0215.12101
[37] I. Podlubny, Fractional Differential Equations. Academic Press Inc., San Diego, CA (1999).; · Zbl 0924.34008
[38] P.M. Rajković, S.D. Marinković, M.S. Stanković, Fractional integrals and derivatives in q-calculus. Appl. Anal. Discrete Math. 1, No 1 (2007), 311-323; doi: 10.2298/AADM0701311R. http://dx.doi.org/10.2298/AADM0701311R; · Zbl 1199.33013
[39] B. Rubin, Fractional Integrals and Potentials. Longman, Harlow (1996).; · Zbl 0864.26004
[40] S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives. Gordon and Breach Science Publishers, Yverdon (1993).; · Zbl 0818.26003
[41] J.J. Trujillo, M. Rivero, B. Bonilla, On a Riemann-Liouville generalized Taylor’s formula. J. Math. Anal. Appl. 231, No 1 (1999), 255-265; doi: 10.1006/jmaa.1998.6224. http://dx.doi.org/10.1006/jmaa.1998.6224; · Zbl 0931.26004
[42] Y. Watanabe, Notes on the generalized derivative of Riemann-Liouville and its application to Leibnitz’s formula, I and II. T?ohoku Math. J. 34, (1931), 8-41.; · JFM 57.0477.02
[43] B.J. West, M. Bologna, P. Grigolini, Physics of Fractal Operators. Springer-Verlag, New York (2003); doi: 10.1007/978-0-387-21746-8. http://dx.doi.org/10.1007/978-0-387-21746-8;
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.