×

Consistent mass and momentum transport for simulating incompressible interfacial flows with large density ratios using the level set method. (English) Zbl 1365.76238

Summary: There exists a sharp density jump at the fluid interfaces in most of interfacial flows encountered in engineering applications. Numerical treatment of the discontinuous fluid density in such flows is a great challenge. In particular, numerical errors can lead to non-physical results at large density ratios, hence limit a flow solver to only small and usually unrealistic density ratios. We introduce a consistent mass and momentum transport method which allows for simulations of interfacial flows with large density ratios in the context of the level set method. Fluid momentum is transported by discretizing the conservative form of the convective term in the momentum equation. A new technique is introduced to compute the flux density based on the temporal evolution of the fluid interfaces and by using the level set function at two subsequent time levels. For consistency, we use the same flux density for both mass and momentum transport, and thereby establish a tight coupling between them. We assess the performance of the proposed method by using a set of benchmark test cases, in which the density ratio ranges from 650 to 10\(^6\). The new method is stable and accurate even at extreme density ratios. The numerical results agree very well with the theoretical and experimental results. In contrast, the results of a non-conservative formulation show non-physical fluid behavior, where the dense fluid is slowed down by the light fluid due to numerical errors.

MSC:

76M25 Other numerical methods (fluid mechanics) (MSC2010)
76D99 Incompressible viscous fluids

Software:

RIPPLE; SOLA-VOF
Full Text: DOI

References:

[1] Rudman, M., A volume-tracking method for incompressible multifluid flows with large density variations, Int J Numer Methods Fluids, 28, 357-378 (1998) · Zbl 0915.76060
[2] Bussmann M, Kothe DB, Sicilian JM. Modeling high density ratio incompressible interfacial flows. In: Proceedings of ASME 2002 Fluids Engineering Division Summer Meeting, Montreal, Canada, 2002.; Bussmann M, Kothe DB, Sicilian JM. Modeling high density ratio incompressible interfacial flows. In: Proceedings of ASME 2002 Fluids Engineering Division Summer Meeting, Montreal, Canada, 2002.
[3] Sussman, M.; Smith, K. M.; Hussaini, M. Y.; Ohta, M.; Zhi-Wei, R., A sharp interface method for incompressible two-phase flows, J Comput Phys, 221, 469-505 (2007) · Zbl 1194.76219
[4] Inamuro, T.; Ogata, T.; Tajima, S.; Konishi, N., A lattice Boltzmann method for incompressible two-phase flows with large density differences, J Comput Phys, 198, 628-644 (2004) · Zbl 1116.76415
[5] Yan, Y.; Zu, Y., A lattice Boltzmann method for incompressible two-phase flows on partial wetting surface with large density ratio, J Comput Phys, 227, 763-775 (2007) · Zbl 1388.76318
[6] Lee, T.; Lin, C. L., A stable discretization of the lattice Boltzmann equation for simulation of incompressible two-phase flows at high density ratio, J Comput Phys, 206, 16-47 (2005) · Zbl 1087.76089
[7] Chen, Y.; Teng, S.; Shukuwa, T.; Ohashi, H., Lattice-Boltzmann simulation of two-phase fluid flows, Int J Mod Phys C, 9, 1383-1391 (1998)
[8] Ding, H.; Spelt, P. D.M.; Shu, C., Diffuse interface model for incompressible two-phase flows with large density ratios, J Comput Phys, 226, 2078-2095 (2007) · Zbl 1388.76403
[9] Calgaro, C.; Chane-Kane, E.; Creusé, E.; Goudon, T., \(L^∞\)-stability of vertex-based MUSCL finite volume schemes on unstructured grids: simulation of incompressible flows with high density ratios, J Comput Phys, 229, 6027-6046 (2010) · Zbl 1425.76157
[10] Farhat, C.; Rallu, A.; Shankaran, S., A higher-order generalized ghost fluid method for the poor for the three-dimensional two-phase flow computation of underwater implosions, J Comput Phys, 227, 7674-7700 (2008) · Zbl 1269.76073
[11] Hu, X. Y.; Khoo, B. C.; Adams, N. A.; Huang, F. L., A conservative interface method for compressible flows, J Comput Phys, 219, 553-578 (2006) · Zbl 1102.76038
[12] Sussman, M.; Puckett, E. G., A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows, J Comput Phys, 162, 301-337 (2000) · Zbl 0977.76071
[13] Hu, X. Y.; Khoo, B. C., An interface interaction method for compressible multifluids, J Comput Phys, 198, 1, 35-64 (2004) · Zbl 1107.76378
[14] Smiljanovski, V.; Moser, V.; Klein, R., A capturing-tracking hybrid scheme for deflagration discontinuities, Combust Theory Modell, 1, 183-215 (1997) · Zbl 0956.76070
[15] Bell, J. B.; Marcus, D. L., A second-order projection method for variable-density flows, J Comput Phys, 101, 334-348 (1992) · Zbl 0759.76045
[16] Bell, J. B.; Colella, P.; Glaz, H. M., A second-order projection method for the incompressible Navier-Stokes equations, J Comput Phys, 85, 257-283 (1989) · Zbl 0681.76030
[17] Chorin, A. J., Numerical Solution of the Navier-Stokes equations, Math Comput, 22, 104, 745-762 (1968) · Zbl 0198.50103
[18] Nichols BD, Hirt CW, Hotchkiss RS. SOLA-VOF: a solution algorithm for transient fluid flow with multiple free boundaries. Technical Report LA-8355, Los Alamos Scientific Laboratory; 1980.; Nichols BD, Hirt CW, Hotchkiss RS. SOLA-VOF: a solution algorithm for transient fluid flow with multiple free boundaries. Technical Report LA-8355, Los Alamos Scientific Laboratory; 1980.
[19] Kothe DB, Mjolsness RC, Torrey MD. RIPPLE: a computer program for incompressible flows with free surfaces. Technical Report LA-12007-MS, LANL; 1991.; Kothe DB, Mjolsness RC, Torrey MD. RIPPLE: a computer program for incompressible flows with free surfaces. Technical Report LA-12007-MS, LANL; 1991.
[20] Park, I. K.; Cho, H. K.; Yoon, H. Y.; Jeong, J. J., Numerical effects of the semi-conservative form of momentum equations for multi-dimensional two-phase flows, Nucl Eng Des, 239, 2365-2371 (2009)
[21] Ferziger, J. H.; Peric, M., Computational methods for fluid dynamics (2001), Springer · Zbl 0869.76003
[22] Raessi, M.; Bussmann, M.; Mostaghimi, J., A semi-implicit finite volume implementation of the CSF method for treating surface tension in interfacial flows, Int J Numer Methods Fluids, 59, 1093-1110 (2009) · Zbl 1158.76368
[23] Raessi, M.; Mostaghimi, J.; Bussmann, M., A volume-of-fluid interfacial flow solver with advected normals, Comput Fluids, 39, 1401-1410 (2010) · Zbl 1242.76256
[24] Desjardins, O.; Blanquart, G.; Balarac, G.; Pitsch, H., High order conservative finite difference scheme for variable density low Mach number turbulent flows, J Comput Phys, 227, 7125-7159 (2008) · Zbl 1201.76139
[25] Desjardins, O.; Moureau, V.; Pitsch, H., An accurate conservative level set/ghost fluid method for simulating turbulent atomization, J Comput Phys, 227, 8395-8416 (2008) · Zbl 1256.76051
[26] Desjardins, O.; Pitsch, H., A spectrally refined interface approach for simulating multiphase flows, J Comput Phys, 228, 5, 1658-1677 (2009) · Zbl 1409.76096
[27] Bird, R. B.; Stewart, W. E.; Lightfoot, E. N., Transport phenomena (2002), John Wiley and Sons: John Wiley and Sons New York
[28] Kang, M.; Fedkiw, R.; Liu, X.-D., A boundary condition capturing method for multiphase incompressible flow, J Sci Comput, 15, 3, 323-360 (2000) · Zbl 1049.76046
[29] van der Vorst, H. A., Iterative Krylov methods for large linear systems (2003), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1023.65027
[30] Brackbill, J. U.; Kothe, D. B.; Zemach, C., A continuum method for modeling surface tension, J Comput Phys, 100, 335-354 (1992) · Zbl 0775.76110
[31] Herrmann, M., The influence of density ratio on the primary atomization of a turbulent liquid jet in crossflow, Proc Combust Inst, 33, 2079-2088 (2011)
[32] Coward, A. V.; Renardy, Y. Y.; Renardy, M.; Richards, J. R., Temporal evolution of periodic disturbances in two-layer Couette flow, J Comput Phys, 132, 346-361 (1997) · Zbl 0880.76055
[33] Kothe, D. B., Perspective on Eulerian finite volume methods for incompressible interfacial flows, (Kuhlmann, H.; Rath, H., Free surface flows (1999), Springer-Verlag), 267-331 · Zbl 0920.76069
[34] (Prosperetti, A.; Tryggvason, G., Computational methods for multiphase flow (2007), Cambridge University Press) · Zbl 1166.76003
[35] Herrmann, M., A balanced force refined level set grid method for two-phase flows on unstructured flow solver grids, J Comput Phys, 227, 2674-2706 (2008) · Zbl 1388.76252
[36] Lorensen, W. E.; Cline, H. E., Marching cubes: a high resolution 3d surface construction algorithm, SIGGRAPH Comput Graph, 21, August, 163-169 (1987)
[37] Youngs, D. L., Time-dependent multi-material flow with large fluid distortion, (Morton, K. W.; Baines, M. J., Numerical methods for fluid dynamics (1982), Academic Press: Academic Press New York), 273-285 · Zbl 0537.76071
[38] Martin, J. C.; Moyce, W. J., An experimental study of the collapse of liquid columns on a rigid horizontal plane, Philos Trans Roy Soc Lond Ser A, 244, March, 312-324 (1952)
[39] Rush, B. M.; Nadim, A., The shape oscillations of a two-dimensional drop including viscous effects, Eng Anal Bound Elem, 24, 43-51 (2000) · Zbl 1065.76564
[40] Stapper, B. E.; Sowa, W. A.; Samuelsen, G. S., An experimental study of the effects of liquid properties on the breakup of a two-dimensional liquid sheet, J Eng Gas Turb Power, 114, 39-45 (1992)
[41] Park, J.; Huh, K. Y.; Li, X.; Renksizbulut, M., Experimental investigation on cellular breakup of a planar liquid sheet from an air-blast nozzle, Phys Fluids, 16, 3, 625-632 (2004) · Zbl 1186.76414
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.