×

Wave equation for generalized Zener model containing complex order fractional derivatives. (English) Zbl 1365.74043

Summary: We study waves in a viscoelastic rod whose constitutive equation is of generalized Zener type that contains fractional derivatives of complex order. The restrictions following from the Second Law of Thermodynamics are derived. The initial boundary value problem for such materials is formulated and solution is presented in the form of convolution. Two specific examples are analyzed.

MSC:

74D05 Linear constitutive equations for materials with memory
35Q74 PDEs in connection with mechanics of deformable solids
35R11 Fractional partial differential equations
74F05 Thermal effects in solid mechanics
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
80A10 Classical and relativistic thermodynamics

References:

[1] Amendola, G., Fabrizio, M., Golden, J.M.: Thermodynamics of Materials with Memory. Springer, New York (2012) · Zbl 1237.80001 · doi:10.1007/978-1-4614-1692-0
[2] Atanacković, T.M.: A modified Zener model of viscoelastic body. Contin. Mech. Thermodyn. 14, 137-148 (2002) · Zbl 1032.74015 · doi:10.1007/s001610100056
[3] Atanacković, T.M., Janev, M., Konjik, S., Pilipović, S., Zorica, D.: Vibrations of an elastic rod on a viscoelastic foundation of complex fractional kelvin-voigt type. Meccanica 50(7), 685-704 (2015) · Zbl 1325.74080
[4] Atanacković, T.M., Konjik, S., Oparnica, L., Zorica, D.: Thermodynamical restrictions and wave propagation for a class of fractional order viscoelastic rods. In: Abstr. Appl. Anal., vol. 2011, p. 975694 (2011) · Zbl 1217.74064
[5] Atanacković, T.M., Konjik, S., Pilipović, S., Zorica, D.: Complex order fractional derivatives in viscoelasticity. Mech. Time Depend. Mater. 20, 175-195 (2016) · doi:10.1007/s11043-016-9290-3
[6] Atanacković, T.M., Pilipović, S., Zorica, D.: Distributed-order fractional wave equation on a finite domain. Creep and forced oscillations of a rod. Contin. Mech. Thermodyn. 23, 305-318 (2011) · Zbl 1272.74324 · doi:10.1007/s00161-010-0177-2
[7] Atanacković, T.M., Pilipović, S., Zorica, D.: Distributed-order fractional wave equation on a finite domain. Stress relaxation in a rod. Int. J. Eng. Sci. 49, 175-190 (2011) · Zbl 1231.74144 · doi:10.1016/j.ijengsci.2010.11.004
[8] Atanacković, T.M., Pilipović, S., Stanković, B., Zorica, D.: Fractional Calculus with Applications in Mechanics: Vibrations and Diffusion Processes. Wiley-ISTE, London (2014) · Zbl 1291.74001 · doi:10.1002/9781118577530
[9] Atanacković, T.M., Pilipović, S., Stanković, B., Zorica, D.: Fractional Calculus with Applications in Mechanics: Wave Propagation, Impact and Variational Principles. Wiley-ISTE, London (2014) · Zbl 1293.74001 · doi:10.1002/9781118577530
[10] Bagley, R.L., Torvik, P.J.: On the fractional calculus model of viscoelastic behavior. J. Rheol. 30(1), 133-155 (1986) · Zbl 0613.73034 · doi:10.1122/1.549887
[11] Doetsch, G.: Handbuch der Laplace-Transformationen I. Birkhäuser, Basel (1950) · Zbl 0040.05901 · doi:10.1007/978-3-0348-6984-3
[12] Franchi, F., Lazzari, B., Nibbi, R.: Mathematical models for the non-isothermal Johnson-Segalman viscoelasticity in porous media: stability and wave propagation. Math. Methods Appl. Sci. 38, 4075-4087 (2015) · Zbl 1333.76010 · doi:10.1002/mma.3348
[13] Hanyga, A.: Fractional-order relaxation laws in non-linear viscoelasticity. Contin. Mech. Thermodyn. 19, 25-36 (2007) · Zbl 1160.74330 · doi:10.1007/s00161-007-0042-0
[14] Hanyga, A.: Wave propagation in anisotropic viscoelasticity. J. Elast. 122(2), 231-254 (2016) · Zbl 1330.74041 · doi:10.1007/s10659-015-9543-4
[15] Konjik, S., Oparnica, Lj, Zorica, D.: Waves in fractional Zener type viscoelastic media. J. Math. Anal. Appl. 365(1), 259-268 (2010) · Zbl 1185.35280 · doi:10.1016/j.jmaa.2009.10.043
[16] Lion, A.: On the thermodynamics of fractional damping elements. Contin. Mech. Thermodyn. 9, 83-96 (1997) · Zbl 0914.73013 · doi:10.1007/s001610050057
[17] Love, E.R.: Fractional derivatives of imaginary order. J. Lond. Math. Soc. 2-3(2), 241-259 (1971) · Zbl 0207.43902 · doi:10.1112/jlms/s2-3.2.241
[18] Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity. Imperial College Press, London (2010) · Zbl 1210.26004 · doi:10.1142/p614
[19] Makris, N., Constantinou, M.: Fractional-derivative Maxwell model for viscous dampers. J. Struct. Eng. 117, 2708-2724 (1991) · doi:10.1061/(ASCE)0733-9445(1991)117:9(2708)
[20] Makris, N., Constantinou, M.: Spring-viscous damper systems for combined seismic and vibration isolation. Earthq. Eng. Struct. Dyn. 21, 649-664 (1992) · doi:10.1002/eqe.4290210801
[21] Makris, N., Constantinou, M.: Models of viscoelasticity with complex-order derivatives. J. Eng. Mech. 119(7), 1453-1464 (1993) · doi:10.1061/(ASCE)0733-9399(1993)119:7(1453)
[22] Podlubny, I.: Fractional Differential Equations, Volume 198 of Mathematics in Science and Engineering, vol. 198. Academic Press, San Diego (1999) · Zbl 0924.34008
[23] Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives—Theory and Applications. Gordon and Breach Science Publishers, Amsterdam (1993) · Zbl 0818.26003
[24] Tamaogi, T., Sogabe, Y.: Longitudinal wave propagation including high frequency component in viscoelastic bars. In: Song, B., Lamberson, L., Casem, D., Kimberley, J. (eds.) Dynamic Behavior of Materials, Volume 1 Proceedings of the 2015 Annual Conference on Experimental and Applied Mechanics, pp. 75-80. Springer (2016) · Zbl 1333.76010
[25] Wang, Y.: Generalized viscoelastic wave equation. Geophys. J. Int. 204, 1216-1221 (2016) · doi:10.1093/gji/ggv514
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.