×

Fractional-order relaxation laws in nonlinear viscoelasticity. (English) Zbl 1160.74330

Summary: Viscoelastic constitutive equations are constructed by assuming that the stress is a nonlinear function of the current strain and of a set of internal variables satisfying relaxation equations of fractional order. The dependence of the relaxation equations on the strain can also be nonlinear. The resulting constitutive equations are examined as mapping between appropriate Sobolev spaces. The proposed formulation is easier to implement numerically than history-based formulations.

MSC:

74D10 Nonlinear constitutive equations for materials with memory
74A20 Theory of constitutive functions in solid mechanics

Software:

FracPECE
Full Text: DOI

References:

[1] Christensen R.M. (1971). Theory of Viscoelasticity: An introduction. Academic Press, New York · Zbl 0215.48303
[2] Simo J.C., Hughes T.J.R. (1998). Computational Inelasticity. Springer, New York · Zbl 0934.74003
[3] Coleman B.D., Gurtin M. (1967). Thermodynamics with internal state variables. J. Chem. Phys. 47: 597–613 · doi:10.1063/1.1711937
[4] Saut J.C., Joseph D.D. (1983). Fading memory. Arch Rat. Mech. Anal. 81: 53–95 · Zbl 0543.73005 · doi:10.1007/BF00283167
[5] Kelbert M.Y., Chaban I.Y. (1986). Relaxation and propagation of pulses in fluids (Izv Ak. Nauk, ser). Mech. Fluids Gases 5: 153–160
[6] Gripenberg G., Londen S.O., Staffans O.J. (1990). Volterra Integral and Functional Equations. Cambridge University Press, Cambridge · Zbl 0695.45002
[7] Kohlrausch, F.: Über die elastische Nachwirkung bei der Torsion, Poggendorfer Annalen (Annalen der Physik und Chemie Lpzg) 119, 337–568 (1863)
[8] Friedrich C. (1991). Relaxation and retardation function of the Maxwell model with fractional derivatives. Rheol. Acta 30: 151–158 · doi:10.1007/BF01134604
[9] Bagley R.L., Torvik P.J. (1986). On the fractional calculus model of viscoelastic behavior. J. Rheol. 30: 133–155 · Zbl 0613.73034 · doi:10.1122/1.549887
[10] Renardy M. (1982). Some remarks on the propagation and non-propagation of discontinuities in linearly viscoelastic liquids. Rheol. Acta 21: 251–254 · Zbl 0488.76002 · doi:10.1007/BF01515713
[11] Hanyga A., Seredyńska M. (1999). Asymptotic ray theory in poro- and viscoelastic media. Wave Motion 30: 175–195 · Zbl 1067.74528 · doi:10.1016/S0165-2125(98)00053-5
[12] Hanyga A., Seredyńska M. (2002). Asymptotic wavefront expansions in hereditary media with singular memory kernels. Quart. Appl. Math. LX: 213–244 · Zbl 1069.74010
[13] Hanyga A. (2003). Well-posedness and regularity for a class of linear thermoviscoelastic materials. Proc. R. Soc. Lond. A 459: 2281–2296 · Zbl 1041.74034 · doi:10.1098/rspa.2003.1120
[14] Gripenberg G. (2001). Non-smoothing in a single conservation law with memory. Elect. J. Diff. Equ. 2001(08): 1–8 · Zbl 0963.35118
[15] Gripenberg G., Londen S.-O. (1995). Fractional derivatives and smoothing in nonlinear conservation laws. Diff. Integr. Equ. 8: 1961–1976 · Zbl 0885.45005
[16] Cockburn B., Gripenberg G., Londen S.-O. (1996). On convergence to entropy solutions of a single conservation law. J. Diff. Eqn. 128: 206–251 · Zbl 0859.35073 · doi:10.1006/jdeq.1996.0094
[17] Chen, P.J.: Growth and Decay of Waves in Solids, vol. VIa/3 of Handbuch der Physik, pp 303–402. Springer, Berlin (1973)
[18] Hanyga, A.: Regularity of solutions of nonlinear problems with singular memory. In: 2nd Canadian Conference on Nonlinear Solid Mechanics, Simon Frazer University, Vancouver (2002) · Zbl 0999.60035
[19] Enelund M., Mähler L., Runesson K., Josefson B.L. (1999). Formulation and integration of the standard linear viscoelastic solid with fractional order rate laws. Int. J. Solids Struct. 36: 2417–2442 · Zbl 0943.74009 · doi:10.1016/S0020-7683(98)00111-5
[20] Hanyga A. (2003). An anisotropic Cole-Cole viscoelastic model of seismic attenuation. J. Comput. Acoustics 11: 75–90 · Zbl 1360.86018 · doi:10.1142/S0218396X03001845
[21] Miller K.S., Ross B. (1993). An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York · Zbl 0789.26002
[22] Podlubny I. (1998). Fractional Differential Equations. Academic Press, San Diego · Zbl 0922.45001
[23] Soula, M., Chevalier, Y.: La dérivee fractionnaire en rhéologie des polymères–Application aux comportements élastiques et viscoélastiques linéaires et non-linéaires des élastomères. In: ESAIM: Proceedings Fractional Differential Systems: Models, Methods and Applications, vol. 5, pp 193–204 (1998). URL http://www.emath.fr/proc/Vol5 · Zbl 0913.73028
[24] Hanyga A. (2001). Wave propagation in media with singular memory. Math. Comput. Mech. 34: 1399–1422 · Zbl 1011.74033 · doi:10.1016/S0895-7177(01)00137-6
[25] Atanackovic T.M. (2001). A modified Zener model of viscoelastic body. Contin. Mech. Thermodyn. 14: 137–148 · Zbl 1032.74015 · doi:10.1007/s001610100056
[26] Adolfsson K., Enelund M. (2003). Fractional derivative viscoelasticity at large deformations. Nonlinear Dyn. 33: 301–321 · Zbl 1065.74015 · doi:10.1023/A:1026003130033
[27] Palade L.I., Attané P., Huilgol R.R., Mena B. (1999). Anomalous stability behavior of a properly invariant constitutive equations which generalises fractional derivative models. Int. J. Eng. Sci. 37: 315–329 · Zbl 1210.76021 · doi:10.1016/S0020-7225(98)00080-9
[28] Freed A., Diethelm K., Luchko Y. (2002). Fractional-order viscoelasticity (FOV): constitutive development using the fractional calculus: first annual report. Tech. Rep. NASA/TM-2002-211914, NASA
[29] White J.L., Metzner A.B. (1963). Development of constitutive equations for polymeric melts and solutions. J. Appl. Polym. Sci. 7: 1867–1889 · doi:10.1002/app.1963.070070524
[30] Wagner M.H., Laun H.M. (1978). Nonlinear shear creep and constrained elastic recovery of an LDPE melt. Rheol. Acta 17: 138–148 · doi:10.1007/BF01517704
[31] Larson R.G. (1988). Constitutive Laws for Polymer Melts and Solutions. Birkhäuser, Boston
[32] Schapery R.A. (1966). An engineering theory of nonlinear viscoelasticity with applications. Int. J. Solids Struct. 2: 407–425 · doi:10.1016/0020-7683(66)90030-8
[33] Schapery R.A. (1969). On the characterization of nonlinear viscoelastic materials. Polym. Eng. Sci. 9: 295–310 · doi:10.1002/pen.760090410
[34] Valanis K.C., Landel R.F. (1967). The strain-energy function of a hyperelastic material in terms of the extension ratios. J. Appl. Phys. 38: 2997–3002 · doi:10.1063/1.1710039
[35] Green A.E., Rivlin R.S. (1957). The mechanics of nonlinear materials with memory. 1. Arch. Rat. Mech. Anal. 1: 1–21 · Zbl 0079.17602 · doi:10.1007/BF00297992
[36] Hanyga, A., Seredyńska, M.: Multiple-integral viscoelastic constitutive equations. J. Nonlinear Mech. (2006). doi:10.1016/j.ijnonlinmec.2007.02.2003 · Zbl 1200.74019
[37] Hanyga, A.: An anisotropic Cole-Cole model of seismic attenuation. In: Shang, E.-C., Li, Q., Gao T.F. (Eds.), Theoretical and Computational Acoustics 2001, pp 319–334, World-Scientific, Singapore (2002). In: Proceedings of the 5th International Conference on Computational and Theoretical Acoustics, Beijing, 21-25 May 2001 · Zbl 1360.86018
[38] Carcione J.M., Cavallini F. (1994). A rheological model for anelastic anisotropic media with applications to seismic wave propagation. Geophys. J. Int. 119: 338–348 · doi:10.1111/j.1365-246X.1994.tb00931.x
[39] Day S.M., Minster J.B. (1984). Numerical simulation of wavefields using a Padé approximant method. Geophys. J. R. Astr. Soc. 78: 105–118 · Zbl 0587.73150
[40] Carcione J.M., Kosloff D., Kosloff R. (1998). Wave propagation simulation in a linear viscoacoustic medium. Geophys. J. R. Astr. Soc. 93: 393–407 · Zbl 0635.73037
[41] Cole K.S., Cole R.H. (1941). Dispersion and absorption in dielectrics, I: Alternating current characteristics. J. Chem. Phys. 9: 341–351 · doi:10.1063/1.1750906
[42] Torvik P.J., Bagley R.L. (1983). On the appearance of the fractional derivative in the behavior of real material. J. Appl. Mech. 51: 294–298 · Zbl 1203.74022 · doi:10.1115/1.3167615
[43] Batzle M., Hofmann R., Han D.-H., Castagna J. (2001). Fluids and frequency dependent seismic velocity of rocks. Lead. Edge 20: 168–171 · doi:10.1190/1.1438900
[44] Soula M., Vinh T., Chevalier Y. (1997). Transient responses of polymers and elastomers deduced from harmonic responses. J. Sound Vibration 205: 185–203 · Zbl 1235.74373 · doi:10.1006/jsvi.1997.0979
[45] Friedrich C., Braun H. (1992). Generalized Cole-Cole behavior and its rheological relevance. Rheol. Acta 31: 309–322 · doi:10.1007/BF00418328
[46] Bagley R.L., Torvik P.J. (1983). Fractional calculus–A different approach to the analysis of viscoelastically damped structures. AIAA J. 21: 741–748 · Zbl 0514.73048 · doi:10.2514/3.8142
[47] Widder D.V. (1946). The Laplace Transform. Princeton University Press, Princeton · Zbl 0060.24801
[48] Doetsch G. (1958). Einführung in Theorie und Anwendung der Laplace Transformation. Birkhäuser Verlag, Basel · Zbl 0202.12301
[49] Eldred B.L., Baker W.P., Palazzotto A.N. (1995). Kelvin-Voigt versus fractional derivative model as constitutive relation for viscoelastic materials. AIAA J. 33: 547–550 · Zbl 0825.73015 · doi:10.2514/3.12471
[50] Samko S.G., Kilbas A.A., Marichev O.I. (1993). Fractional Integrals and Derivatives, Theory and Applications. Gordon and Breach, Amsterdam · Zbl 0818.26003
[51] Gorenflo, R.: Fractional Calculus: Some Numerical methods, Springer, Wien, 1997, CISM Courses and Lectures, vol. 38
[52] Lubich C. (1986). Discretized fractional calculus. SIAM J. Math. Anal. 17: 704–719 · Zbl 0624.65015 · doi:10.1137/0517050
[53] Lubich C. (1988). Convolution quadrature and discretized fractional calculus, I. Numer. Math. 52: 129–145 · Zbl 0637.65016 · doi:10.1007/BF01398686
[54] Lubich C. (1988). Convolution quadrature and discretized fractional calculus, II. Numer. Math. 52: 413–425 · Zbl 0643.65094 · doi:10.1007/BF01462237
[55] Hanyga A., Lu J.-F. (2005). Wave field simulation for heterogeneous transversely isotropic porous media with the JKD dynamic permeability. Comput. Mech. 36: 196–208. doi:10.1007/s00466-004-0652-3 · Zbl 1138.74326 · doi:10.1007/s00466-004-0652-3
[56] Zeidler E. (1985). Nonlinear Functional Analysis and its Applications, vol. II/B. Springer, New York · Zbl 0583.47051
[57] Corduneanu C. (1991). Integral Equations and Applications. Cambridge University Press, Cambridge · Zbl 0714.45002
[58] Diethelm K., Ford N.J. (2003). Analysis of fractional differential equations. J. Math. Anal. Appl. 265: 229–248 · Zbl 1014.34003 · doi:10.1006/jmaa.2000.7194
[59] Diekmann O., Lunel S.M.V., Walther H.-O., Gils S.A. (1995). Delay Equations, Functional-, Complex-, and Nonlinear Analysis. Springer, New York · Zbl 0826.34002
[60] Bernstein B., Kearsley E.A., Zapas L.J. (1963). A study of stress relaxation with finite strains. Trans. Soc. Rheol. 7: 391–410 · Zbl 0139.42701 · doi:10.1122/1.548963
[61] Laun H.M. (1978). Description of the non-linear shear behavior of a low-density polyethylene melt by means of an exerimentally determined strain dependent memory function. Rheol. Acta 17: 1–15 · doi:10.1007/BF01567859
[62] Staverman A.J., Schwarzl F. (1952). Thermodynamics of viscoelastic behavior (model theory). Proc. Konink. Nederlands Akad. van Wetenschapen B55: 474–485 · Zbl 0048.19704
[63] Breuer S., Onat E.T. (1964). On recoverable work in linear viscoelasticity. ZAMP 15: 13–21 · Zbl 0123.40802 · doi:10.1007/BF01602660
[64] Seredyńska M., Hanyga A. (2000). Nonlinear Hamiltonian equations with fractional damping. J. Math. Phys. 41: 2135–2156 · Zbl 0986.34055 · doi:10.1063/1.533231
[65] Desch W., Grimmer R. (2001). On the well-posedness of constitutive laws involving dissipation potentials. Trans. Am. Math. Soc. 353: 5095–5120 · Zbl 1013.74004 · doi:10.1090/S0002-9947-01-02847-1
[66] Fabrizio M., Morro A. (1992). Mathematical Problems in Linear Viscoelasticity. SIAM, Philadelphia · Zbl 0753.73003
[67] Diethelm, K., Freed, A.D.: The FracPECE subroutine for the numerical solution of differential equations of fractional order. pp 57–71 Gesellschaft für wissenschaftliche Dataverarbeitung, Göttingen (1999)
[68] Diethelm, K., Freed, A.D., Ford, N.: A predictor-corrector approach to the numerical solution of fractional differential equations. Nonlinear Dyn. 22, 3–22 (2002) · Zbl 1009.65049
[69] Enelund M., Olsson P. (1998). Damping described by fading memory – Analysis and application to fractional derivative models. Int. J. Solids Struct. 36: 939–970 · Zbl 0936.74023 · doi:10.1016/S0020-7683(97)00339-9
[70] Enelund M., Lesieutre G.A. (1999). Time-domain modeling of damping using anelastic displacement fields and fractional calculus. Int. J. Solids Struct. 36: 4447–4472 · Zbl 0943.74008 · doi:10.1016/S0020-7683(98)00194-2
[71] Diethelm K. (1997). An algorithm for the numerical solution of differential equations of fractional order. Elect. Trans. Numer. Anal. 5: 1–6 · Zbl 0890.65071
[72] Newmark N.M. (1959). A method of computation for structural dynamics. ASCE J. Eng. Mech. Div. 5: 67–94
[73] Cook R.D., Malkhus D.S., Plesha M.E., Witt R.J. (2002). Concepts and Applications of Finite Element Analysis. 4th edn. Wiley, New York
[74] Day W.A. (1970). Restrictions on the relaxation functions in linear viscoelasticity. Quart. Jl Mech. Appl. Math. 24: 487–497 · Zbl 0241.73035 · doi:10.1093/qjmam/24.4.487
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.