×

Overconvergence of series in generalized Mittag-Leffler functions. (English) Zbl 1364.33020

Summary: Series defined by means of the three-parametric Mittag-Leffler functions, called also the Prabhakar functions, are considered in this paper. Their behaviour is investigated on the boundaries of the convergence domains. Necessary and sufficient conditions for their overconvergence are proposed. The corresponding results for series in Mittag-Leffler functions are discussed as a particular case. Such kind of results are motivated by the fact that the solutions of some fractional order differential and integral equations can be written in terms of series (or series of integrals) of Mittag-Leffler type functions.

MSC:

33E12 Mittag-Leffler functions and generalizations
40A30 Convergence and divergence of series and sequences of functions
30B30 Boundary behavior of power series in one complex variable; over-convergence
30B10 Power series (including lacunary series) in one complex variable
Full Text: DOI

References:

[1] R. Ashurov, A. Cabada, B. Turmetov, Operator method for construction of solutions of linear fractional differential equations with constant coefficients. Fract. Calc. Appl. Anal. 19, No 1 (2016), 229-252; .; Ashurov, R.; Cabada, A.; Turmetov, B., Operator method for construction of solutions of linear fractional differential equations with constant coefficients, Fract. Calc. Appl. Anal., 19, 1, 229-252 (2016) · Zbl 1339.34006 · doi:10.1515/fca-2016-0013;
[2] E. Bazhlekova, I. Dimovski, Exact solution of two-term time-fractional Thornleys problem by operational method. Integr. Transf. Spec. Funct. 25, No 1 (2014), 61-74; .; Bazhlekova, E.; Dimovski, I., Exact solution of two-term time-fractional Thornleys problem by operational method, Integr. Transf. Spec. Funct., 25, 1, 61-74 (2014) · Zbl 1297.35265 · doi:10.1080/10652469.2013.815184
[3] X.-L. Ding, J.J. Nieto, Analytical solutions for the multi-term time-space fractional reaction-diffusion equations on an infinite domain. Fract. Calc. Appl. Anal. 18, No 3 (2015), 697-716; .; Ding, X.-L.; Nieto, J. J., Analytical solutions for the multi-term time-space fractional reaction-diffusion equations on an infinite domain, Fract. Calc. Appl. Anal., 18, 3, 697-716 (2015) · Zbl 1499.35627 · doi:10.1515/fca-2015-0043;
[4] A. Erdélyi et al. (Ed-s), Higher Transcendental Functions, Vols. 1-3. McGraw-Hill, New York-Toronto-London (1953-1955).; Erdélyi, A., Higher Transcendental Functions, 1-3 (19531955) · Zbl 0052.29502
[5] R. Gorenflo, A.A. Kilbas, F. Mainardi and S.V. Rogosin, Mittag-Leffler Functions: Related Topics and Applications, Springer-Verlag (2014).; Gorenflo, R.; Kilbas, A. A.; Mainardi, F.; Rogosin, S. V., Mittag-Leffler Functions: Related Topics and Applications (2014) · Zbl 1309.33001
[6] J. Hadamard, Essai sur l’etude des fonctions données par leur développment de Taylor. J. Math. Pures Appl. (4), 8 (1892), 101-186.; Hadamard, J., Essai sur l’etude des fonctions données par leur développment de Taylor, J. Math. Pures Appl., 8, 4, 101-186 (1892) · JFM 24.0359.01
[7] A.A. Kilbas, A.A. Koroleva, S.V. Rogosin, Multi-parametric Mittag-Leffler functions and their extension. Fract. Calc. Appl. Anal. 16, No 2 (2013), 378-404; .; Kilbas, A. A.; Koroleva, A. A.; Rogosin, S. V., Multi-parametric Mittag-Leffler functions and their extension, Fract. Calc. Appl. Anal., 16, 2, 378-404 (2013) · Zbl 1312.33058 · doi:10.2478/s13540-013-0024-9;
[8] V. Kiryakova, Fractional order differential and integral equations with Erdélyi-Kober operators: Explicit solutions by means of the transmutation method. AIP Conf. Proc. 1410 (2011), 247-258; .; Kiryakova, V., Fractional order differential and integral equations with Erdélyi-Kober operators: Explicit solutions by means of the transmutation method, AIP Conf. Proc., 1410, 247-258 (2011) · doi:10.1063/1.3664376
[9] V. Kiryakova, The special functions of fractional calculus as generalized fractional calculus operators of some basic functions. Computers and Mathematics with Appl. 59, No 3 (2010), 1128-1141; .; Kiryakova, V., The special functions of fractional calculus as generalized fractional calculus operators of some basic functions, Computers and Mathematics with Appl., 59, 3, 1128-1141 (2010) · Zbl 1189.26007 · doi:10.1016/j.camwa.2009.05.014
[10] V. Kiryakova, From the hyper-Bessel operators of Dimovski to the generalized FC. Fract. Calc. Appl. Anal. 17, No 4 (2014), 977-1000; .; Kiryakova, V., From the hyper-Bessel operators of Dimovski to the generalized FC, Fract. Calc. Appl. Anal., 17, 4, 977-1000 (2014) · Zbl 1314.44003 · doi:10.2478/s13540-014-0210-4;
[11] R. Kovacheva, Overconvergence and zero distribution of Fourier series. Compt. rend. Acad. bulg. Sci. 61, No 11 (2008), 1377-1384.; Kovacheva, R., Overconvergence and zero distribution of Fourier series, Compt. rend. Acad. bulg. Sci., 61, 11, 1377-1384 (2008) · Zbl 1199.30007
[12] F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models. Imperial College Press & World Sci. (2010).; Mainardi, F., Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models (2010) · Zbl 1210.26004
[13] A. Markushevich, A Theory of Analytic Functions. Vols. 1, 2 (In Russian), Nauka, Moscow (1967).; Markushevich, A., A Theory of Analytic Functions, 1, 2 (1967) · Zbl 0148.05201
[14] A. Ostrowski, Über eine Eigenschaft gewisser Potenzreihen mit unendlichvielen verschwindenden Koefizienten. Berl. Ber. (1921), 557-565.; Ostrowski, A., Über eine Eigenschaft gewisser Potenzreihen mit unendlichvielen verschwindenden Koefizienten, Berl. Ber., 557-565 (1921) · JFM 48.0332.01
[15] A. Ostrowski, Über die Darstellung analytischer Functionen durch Potenzreihen. Jber. Deutsch. Math.-Verein32 (1923), 286-295.; Ostrowski, A., Über die Darstellung analytischer Functionen durch Potenzreihen, Jber. Deutsch. Math.-Verein, 32, 286-295 (1923) · JFM 50.0241.01
[16] A. Ostrowski, On representation of analytical functions by power series. J. London Math. Soc. 1, Part 4 (1926), 251-263.; Ostrowski, A., On representation of analytical functions by power series, J. London Math. Soc., 1, 251-263 (1926) · JFM 52.0292.01
[17] J. Paneva-Konovska, Convergence of series in three-parametric Mittag-Leffler functions Mathematica Slovaca, 64, No 1 (2014), 73-84; .; Paneva-Konovska, J., Convergence of series in three-parametric Mittag-Leffler functions, Mathematica Slovaca, 64, 1, 73-84 (2014) · Zbl 1324.33015 · doi:10.2478/s12175-013-0188-0
[18] J. Paneva-Konovska, Periphery behaviour of series in Mittag-Leffler type functions, I. Intern. J. Appl. Math., 29, No 1 (2016), 69-78; .; Paneva-Konovska, J., Periphery behaviour of series in Mittag-Leffler type functions, I, Intern. J. Appl. Math., 29, 1, 69-78 (2016) · Zbl 1359.30008 · doi:10.12732/ijam.v29i1.6
[19] J. Paneva-Konovska, Periphery behaviour of series in Mittag-Leffler type functions, II. Intern. J. Appl. Math., 29, No 2 (2016), 175-187; .; Paneva-Konovska, J., Periphery behaviour of series in Mittag-Leffler type functions, II, Intern. J. Appl. Math., 29, 2, 175-187 (2016) · Zbl 1359.30007 · doi:10.12732/ijam.v29i2.2
[20] J. Paneva-Konovska, From Bessel to Multi-Index Mittag Leffler Functions: Enumerable Families, Series in them and Convergence. World Scientific Publishing, London (2016).; Paneva-Konovska, J., From Bessel to Multi-Index Mittag Leffler Functions: Enumerable Families, Series in them and Convergence (2016) · Zbl 1353.33001
[21] J. Paneva-Konovska, On some Mittag-Leffler series: A set of overconvergence theorems. AIP Conf. Proc. 1789 (2016), 050007-1-050007-6; .; Paneva-Konovska, J., On some Mittag-Leffler series: A set of overconvergence theorems, AIP Conf. Proc., 1789, 050007-1-050007-6 (2016) · Zbl 1359.30008 · doi:10.1063/1.4968491
[22] J. Paneva-Konovska, Bessel series: some results on their overconvergence. Compt. rend. Acad. bulg. Sci. 70, No 1 (2017), 21-28; .; Paneva-Konovska, J., Bessel series: some results on their overconvergence, Compt. rend. Acad. bulg. Sci., 70, 1, 21-28 (2017) · Zbl 1389.30002
[23] J. Paneva-Konovska, Inequalities for the partial sums of some Mittag-Leffler type series. J. of Inequalities and Special Functions8, No 1 (2017), 42-47; .; Paneva-Konovska, J., Inequalities for the partial sums of some Mittag-Leffler type series, J. of Inequalities and Special Functions, 8, 1, 42-47 (2017) · Zbl 1364.33020
[24] T.R. Prabhakar, A singular integral equation with a generalized Mittag-Leffler function in the kernel. Yokohama Math. J. 19 (1971), 7-15.; Prabhakar, T. R., A singular integral equation with a generalized Mittag-Leffler function in the kernel, Yokohama Math. J., 19, 7-15 (1971) · Zbl 0221.45003
[25] S. Rogosin, The role of the Mittag-Leffler function in fractional modelling. Mathematics3 (2015), 368-381; .; Rogosin, S., The role of the Mittag-Leffler function in fractional modelling, Mathematics, 3, 368-381 (2015) · Zbl 1318.33036 · doi:10.3390/math3020368
[26] T. Sandev, A. Chechkin, H. Kantz, R. Metzler, Diffusion and Fokker-Planck-Smoluchowski equations with generalized memory kernel. Fract. Calc. Appl. Anal. 18, No 4 (2015), 1006-1038; .; Sandev, T.; Chechkin, A.; Kantz, H.; Metzler, R., Diffusion and Fokker-Planck-Smoluchowski equations with generalized memory kernel, Fract. Calc. Appl. Anal., 18, 4, 1006-1038 (2015) · Zbl 1338.60199 · doi:10.1515/fca-2015-0059;
[27] T. Sandev, A.V. Chechkin, N. Korabel, H. Kantz, I.M. Sokolov, R. Metzler, Distributed-order diffusion equations and multifractality: Models and solutions. Physical Review E92 (2015), Article # 042117; .; Sandev, T.; Chechkin, A. V.; Korabel, N.; Kantz, H.; Sokolov, I. M.; Metzler, R., Distributed-order diffusion equations and multifractality: Models and solutions, Physical Review E, 92 (2015) · Zbl 1338.60199 · doi:10.1103/PhysRevE.92.042117
[28] T. Sandev, Z. Tomovski, B. Crnkovic, Generalized distributed order diffusion equations with composite time fractional derivative. Computers & Mathematics with Applications73, No 6 (2017), 1028-1040; .; Sandev, T.; Tomovski, Z.; Crnkovic, B., Generalized distributed order diffusion equations with composite time fractional derivative, Computers & Mathematics with Applications, 73, 6, 1028-1040 (2017) · Zbl 1409.35227 · doi:10.1016/j.camwa.2016.07.009
[29] T. Sandev, Ž. Tomovski, J. Dubbeldam, Generalized Langevin equation with a three parameter Mittag-Leffler noise Physica A390 (2011), 3627-3636; .; Sandev, T.; Tomovski, Ž.; Dubbeldam, J., Generalized Langevin equation with a three parameter Mittag-Leffler noise, Physica A, 390, 3627-3636 (2011) · Zbl 1422.35118 · doi:10.1016/j.physa.2011.05.039
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.