Skip to main content
Log in

Analytical solutions for the multi-term time-space fractional reaction-diffusion equations on an infinite domain

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

We consider the analytical solutions of multi-term time-space fractional reaction-diffusion equations on an infinite domain. The results are presented in a compact and elegant form in terms of the Mittag-Leffler functions. The importance of the derived results lies in the fact that numerous results on fractional reaction, fractional diffusion, fractional wave problems, and fractional telegraph equations scattered in the literature can be derived as special cases of the results presented in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.S. Chen, C.W. Liu, Generalized analytical solution for advectiondispersion equation in finite spatial domain with arbitrary timedependent inlet boundary condition. Hydrology and Earth System Sciences 15 (2011), 2471–2479.

    Article  Google Scholar 

  2. X.L. Ding, Y.L. Jiang, Analytical solutions for the multi-term timespace fractional advection-diffusion equations with mixed boundary conditions. Nonlinear Analysis: Real World Applications 14 (2013), 1026–1033.

    Article  MathSciNet  Google Scholar 

  3. A.Z. Fino, H. Ibrahim, Analytical solution for a generalized space-time fractional telegraph equation. Mathematical Methods in the Applied Sciences 36 (2013), 1813–1824.

    Article  MathSciNet  Google Scholar 

  4. N.J. Ford, M.M. Rodrigues, J.Y. Xiao, Y.B. Yan, Numerical analysis of a two-parameter fractional telegraph equation. J. of Comptutational and Applied Mathematics 249 (2013), 95–106.

    Article  MathSciNet  Google Scholar 

  5. C. Gong, W. Bao, G. Tang, A parallel algorithm for the Riesz fractional reaction-diffusion equation with explicit finite difference method. Fractional Calculus and Applied Analysis 16, No 3 (2013), 654–669; DOI: 10.2478/s13540-013-0041-8; http://www.degruyter.com/view/j/fca.2013.16.issue-3/s13540-013-0041-8/s13540-013-0041-8.xml; http://link.springer.com/article/10.2478/s13540-013-0041-8.

    Article  MathSciNet  Google Scholar 

  6. M.G. Hall, T.R. Barrick, From diffusion-weighted MRI to anomalous diffusion imaging. Magnetic Resonance in Medicine 59 (2008), 447–455.

    Article  Google Scholar 

  7. R. Hilfer, Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000).

    Book  Google Scholar 

  8. D. Hnaien, F. Kellil, R. Lassoued, Asymptotic behavior of global solutions of an anomalous diffusion system. J. of Mathematical Analysis and Applications 421 (2015), 1519–1530.

    Article  MathSciNet  Google Scholar 

  9. H. Jiang, F. Liu, I. Turner, K. Burrage, Analytical solutions for the multi-term time-space Caputo-Riesz fractional advection-diffusion equations on a finite domain. J. of Mathematical Analysis and Applications 389 (2012), 1117–1127.

    Article  MathSciNet  Google Scholar 

  10. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, 204. Elsevier Science B.V., Amsterdam (2006).

  11. A. Kumar, D.K. Jaiswal, N. Kumar, Analytical solutions of onedimensional advection-diffusion equation with variable coefficients in a finite domain. J. of Earth System Science 118 (2009), 539–549.

    Article  Google Scholar 

  12. S. Kumar, A new analytical modelling for fractional telegraph equation via Laplace transform. Applied Mathematical Modelling 38 (2014), 3154–3163.

    Article  MathSciNet  Google Scholar 

  13. T.A.M. Langlands, B.I. Henry, S.L. Wearne, Fractional cable equation models for anomalous electrodiffusion in nerve cells: infinite domain solutions. J. of Mathematical Biology 59 (2009), 761–808.

    Article  MathSciNet  Google Scholar 

  14. N.N. Leonenko, M.M. Meerschaert, A. Sikorskii, Fractional Pearson diffusions. J. of Mathematical Analysis and Applications 403 (2013), 532–546.

    Article  MathSciNet  Google Scholar 

  15. C. Li, W.H. Deng, Analytical solutions, moments, and their asymptotic behaviors for the time-space fractional cable equation. Communications in Theoretical Physics 62 (2014), 54–60.

    Article  MathSciNet  Google Scholar 

  16. F. Mainardi, Fractals and Fractional Calculus Continuum Mechanics. Springer Verlag, New York (1997).

    MATH  Google Scholar 

  17. A.B. Malinowska, D.F.M. Torres, Towards a combined fractional mechanics and quantization. Fractional Calculus and Applied Analysis 15, No 3 (2012), 407–417; DOI: 10.2478/s13540-012-0029-9; http://www.degruyter.com/view/j/fca.2012.15.issue-3/s13540-012-0029-9/s13540-012-0029-9.xml; http://link.springer.com/article/10.2478/s13540-012-0029-9.

    Article  MathSciNet  Google Scholar 

  18. K.K. Manne, A.J. Hurd, V.M. Kenkre, Nonlinear waves in reactiondiffusion systems: The effect of transport memory. Physical Review E 61 (2000), 4177–4184.

    Article  Google Scholar 

  19. S. McKee, J.A. Cuminato, Nonlocal diffusion, a Mittag-Leffler function and a two-dimensional Volterra integral equation. J. of Mathematical Analysis and Applications 423 (2015), 243–252.

    Article  MathSciNet  Google Scholar 

  20. R. Metzler, J. Klafter, The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports-Review Section of Physics Letters 339 (2000), 1–77.

    MathSciNet  MATH  Google Scholar 

  21. T.M. Michelitsch, G.A. Maugin, The fractional Laplacian as a limiting case of a self-similar spring model and applications to ndimensional anomalous diffusion. Fractional Calculus and Applied Analysis 16, No 4 (2013), 827–859; DOI: 10.2478/s13540-013-0052-5; http://www.degruyter.com/view/j/fca.2013.16.issue-4/s13540-013-0052-5/s13540-013-0052-5.xml; break http://link.springer.com/article/10.2478/s13540-013-0052-5.

    Article  MathSciNet  Google Scholar 

  22. S. Momani, Analytic and approximate solutions of the space- and timefractional telegraph equations. Applied Mathematics and Computation 170 (2005), 1126–1134.

    Article  MathSciNet  Google Scholar 

  23. M. Niu, B. Xie, Impacts of Gaussian noises on the blow-up times of nonlinear stochastic partial differential equations. Nonlinear Analysis: Real World Applications 13 (2012), 1346–1352.

    Article  MathSciNet  Google Scholar 

  24. E. Orsingher, L. Beghin, Time-fractional telegraph equations and telegraph processes with brownian time. Probability Theory and Related Fields 128 (2004), 141–160.

    Article  MathSciNet  Google Scholar 

  25. B.W. Philippa, R.D. White, R.E. Robson, Analytic solution of the fractional advection-diffusion equation for the time-of-flight experiment in a finite geometry. Physical Review E 84 (2011), 1–9.

    Article  Google Scholar 

  26. I. Podlubny, Fractional Differential Equations. Academic Press, New York (1999).

    MATH  Google Scholar 

  27. Y.Z. Povstenko, Signaling problem for time-fractional diffusion-wave equation in a half-space in the case of angular symmetry. Nonlinear Dynamics 55 (2010), 593–605.

    Article  Google Scholar 

  28. Y.Z. Povstenko, Analytical solution of the advection-diffusion equation for a ground-level finite area source. Atmospheric Environment 42 (2008), 9063–9069.

    Article  Google Scholar 

  29. R. Stern, F. Effenberger, H. Fichtner, T. Sch¨afer, The space-fractional diffusion-advection equation: Analytical solutions and critical assessment of numerical solutions. Fractional Calculus and Applied Analysis 17 (2014), 171–190; DOI: 10.2478/s13540-014-0161-9; http://www.degruyter.com/view/j/fca.2014.17.issue-1/s13540-014-0161-9/s13540-014-0161-9.xml; http://link.springer.com/article/10.2478/s13540-014-0161-9.

    Article  MathSciNet  Google Scholar 

  30. O. Vasilyeva, F. Lutscher, Competition of three species in an advective environment. Nonlinear Analysis: Real World Applications 13 (2012), 1730–1748.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Li Ding.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, XL., Nieto, J.J. Analytical solutions for the multi-term time-space fractional reaction-diffusion equations on an infinite domain. FCAA 18, 697–716 (2015). https://doi.org/10.1515/fca-2015-0043

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2015-0043

MSC 2010

Keywords

Navigation