×

Comparison of reduced models for blood flow using Runge-Kutta discontinuous Galerkin methods. (English) Zbl 1361.92020

Summary: One-dimensional blood flow models take the general form of nonlinear hyperbolic systems but differ in their formulation. One class of models considers the physically conserved quantities of mass and momentum, while another class describes mass and velocity. Further, the averaging process employed in the model derivation requires the specification of the axial velocity profile; this choice differentiates models within each class. Discrepancies among differing models have yet to be investigated. In this paper, we comment on some theoretical differences among models and systematically compare them for physiologically relevant vessel parameters, network topology, and boundary data. In particular, the effect of the velocity profile is investigated in the cases of both smooth and discontinuous solutions, and a recommendation for a physiological model is provided. The models are discretized by a class of Runge-Kutta discontinuous Galerkin methods.

MSC:

92C35 Physiological flow
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs

References:

[1] Acosta, S.; Puelz, C.; Rivière, B.; Penny, D. J.; Rusin, C. G., Numerical method of characteristics for one-dimensional blood flow, J. Comput. Phys., 294, 96-109 (2015) · Zbl 1349.76932
[3] Anliker, M.; Rockwell, R. L.; Ogden, E., Nonlinear analysis of flow pulses and shock waves in arteries, Z. Angew. Math. Phys., 22, 217-246 (1971)
[4] Azer, K.; Peskin, C. S., A one-dimensional model of blood flow in arteries with friction and convection based on the Womersley velocity profile, Cardiovasc. Eng., 7, 51-73 (2007)
[5] Barnard, A.; Hunt, W.; Timlake, W.; Varley, E., A theory of fluid flow in compliant tubes, Biophys. J., 6, 717-724 (1966)
[6] Bessems, D.; Rutten, M.; Van De Vosse, F., A wave propagation model of blood flow in large vessels using an approximate velocity profile function, J. Fluid Mech., 580, 145-168 (2007) · Zbl 1175.76171
[7] Blanco, P. J.; Pivello, M.; Urquiza, S.; Feijóo, R., On the potentialities of 3D-1D coupled models in hemodynamics simulations, J. Biomech., 42, 919-930 (2009)
[8] Boileau, E.; Nithiarasu, P.; Blanco, P. J.; Müller, L. O.; Fossan, F. E.; Hellevik, L. R.; Donders, W. P.; Huberts, W.; Willemet, M.; Alastruey, J., A benchmark study of numerical schemes for one-dimensional arterial blood flow modelling, Int. J. Numer. Methods Biomed. Eng., 31 (2015)
[9] Čanić, S.; Kim, E. H., Mathematical analysis of the quasilinear effects in a hyperbolic model blood flow through compliant axi-symmetric vessels, Math. Methods Appl. Sci., 26, 1161-1186 (2003) · Zbl 1141.76484
[10] Coccarelli, A.; Boileau, E.; Parthimos, D.; Nithiarasu, P., An advanced computational bioheat transfer model for a human body with an embedded systemic circulation, Biomech. Model. Mechanobiol., 15, 1173-1190 (2016)
[11] Cockburn, B.; Lin, S. Y.; Shu, C. W., TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems, J. Comput. Phys., 84, 90-113 (1989) · Zbl 0677.65093
[12] Delestre, O.; Lagrée, P. Y., A “well-balanced” finite volume scheme for blood flow simulation, Int. J. Numer. Methods Fluids, 72, 177-205 (2013) · Zbl 1455.76215
[13] Fernández, M.Á.; Milisic, V.; Quarteroni, A., Analysis of a geometrical multiscale blood flow model based on the coupling of ODEs and hyperbolic PDEs, Multiscale Model. Simul., 4, 215-236 (2005) · Zbl 1085.35095
[14] Formaggia, L.; Gerbeau, J. F.; Nobile, F.; Quarteroni, A., On the coupling of 3D and 1D Navier-Stokes equations for flow problems in compliant vessels, Comput. Methods Appl. Mech. Eng., 191, 561-582 (2001) · Zbl 1007.74035
[15] Formaggia, L.; Lamponi, D.; Quarteroni, A., One-dimensional models for blood flow in arteries, J. Eng. Math., 47, 251-276 (2003) · Zbl 1070.76059
[16] Formaggia, L.; Nobile, F.; Quarteroni, A., A one dimensional model for blood flow: application to vascular prosthesis, (Mathematical Modeling and Numerical Simulation in Continuum Mechanics (2002), Springer), 137-153 · Zbl 1001.76127
[17] Grinberg, L.; Anor, T.; Madsen, J.; Yakhot, A.; Karniadakis, G., Large-scale simulation of the human arterial tree, Clin. Exp. Pharmacol. Physiol., 36, 194-205 (2009)
[18] Harten, A., On the symmetric form of systems of conservation laws with entropy, J. Comput. Phys., 49, 151-164 (1983) · Zbl 0503.76088
[19] Hughes, T. J., A Study of the One-Dimensional Theory of Arterial Pulse Propagation (1974), University of California: University of California Berkeley, Ph.D. thesis
[20] Hughes, T. J.; Lubliner, J., On the one-dimensional theory of blood flow in the larger vessels, Math. Biosci., 18, 161-170 (1973) · Zbl 0262.92004
[21] Keener, J. P.; Sneyd, J., Mathematical Physiology, vol. 1 (1998), Springer · Zbl 0913.92009
[22] Lange, R. L.; Hecht, H. H., Genesis of pistol-shot and Korotkoff sounds, Circulation, 18, 975-978 (1958)
[23] Luo, J.; Shu, C. W.; Zhang, Q., A priori error estimates to smooth solutions of the third order Runge-Kutta discontinuous Galerkin method for symmetrizable systems of conservation laws, ESAIM: Math. Model. Numer. Anal., 49, 991-1018 (2015) · Zbl 1327.65193
[24] Marchandise, E.; Willemet, M.; Lacroix, V., A numerical hemodynamic tool for predictive vascular surgery, Med. Eng. Phys., 31, 131-144 (2009)
[25] Mikelic, A.; Guidoboni, G.; Canic, S., Fluid-structure interaction in a pre-stressed tube with thick elastic walls I: the stationary Stokes problem, Netw. Heterog. Media, 2, 397 (2007) · Zbl 1260.35147
[26] Müller, L. O.; Blanco, P. J.; Watanabe, S. M.; Feijóo, R. A., A high-order local time stepping finite volume solver for one-dimensional blood flow simulations: application to the ADAN model, Int. J. Numer. Methods Biomed. Eng. (2015)
[27] Müller, L. O.; Toro, E. F., Well-balanced high-order solver for blood flow in networks of vessels with variable properties, Int. J. Numer. Methods Biomed. Eng., 29, 1388-1411 (2013)
[28] Murgo, J. P.; Westerhof, N.; Giolma, J. P.; Altobelli, S. A., Aortic input impedance in normal man: relationship to pressure wave forms, Circulation, 62, 105-116 (1980)
[29] Mynard, J.; Nithiarasu, P., A 1D arterial blood flow model incorporating ventricular pressure, aortic valve and regional coronary flow using the locally conservative Galerkin (LCG) method, Commun. Numer. Methods Eng., 24, 367-417 (2008) · Zbl 1137.92009
[30] Olufsen, M. S.; Peskin, C. S.; Kim, W. Y.; Pedersen, E. M.; Nadim, A.; Larsen, J., Numerical simulation and experimental validation of blood flow in arteries with structured-tree outflow conditions, Ann. Biomed. Eng., 28, 1281-1299 (2000)
[31] Politi, M. T.; Ghigo, A.; Fernández, J. M.; Khelifa, I.; Gaudric, J.; Fullana, J. M.; Lagrée, P. Y., The dicrotic notch analyzed by a numerical model, Comput. Biol. Med., 72, 54-64 (2016)
[32] Quarteroni, A.; Veneziani, A.; Vergara, C., Geometric multiscale modeling of the cardiovascular system, between theory and practice, Comput. Methods Appl. Mech. Eng., 302, 193-252 (2016) · Zbl 1423.76528
[33] Remington, J. W.; Wood, E. H., Formation of peripheral pulse contour in man, J. Appl. Physiol., 9, 433-442 (1956)
[34] Sheng, C.; Sarwal, S.; Watts, K.; Marble, A., Computational simulation of blood flow in human systemic circulation incorporating an external force field, Med. Biol. Eng. Comput., 33, 8-17 (1995)
[35] Sherwin, S.; Formaggia, L.; Peiro, J.; Franke, V., Computational modelling of 1D blood flow with variable mechanical properties and its application to the simulation of wave propagation in the human arterial system, Int. J. Numer. Methods Fluids, 43, 673-700 (2003) · Zbl 1032.76729
[36] Stergiopulos, N.; Young, D.; Rogge, T., Computer simulation of arterial flow with applications to arterial and aortic stenoses, J. Biomech., 25, 1477-1488 (1992)
[37] Wang, X.; Fullana, J. M.; Lagrée, P. Y., Verification and comparison of four numerical schemes for a 1D viscoelastic blood flow model, Comput. Methods Biomech. Biomed. Eng., 18, 1704-1725 (2015)
[38] Xiao, N.; Alastruey, J.; Figueroa, C. Alberto, A systematic comparison between 1-D and 3-D hemodynamics in compliant arterial models, Int. J. Numer. Methods Biomed. Eng., 30, 204-231 (2014)
[39] Zhang, H.; Fujiwara, N.; Kobayashi, M.; Yamada, S.; Liang, F.; Takagi, S.; Oshima, M., Development of a numerical method for patient-specific cerebral circulation using 1D-0D simulation of the entire cardiovascular system with SPECT data, Ann. Biomed. Eng. (2015)
[40] Zhang, Q.; Shu, C. W., Error estimates to smooth solutions of Runge-Kutta discontinuous Galerkin method for symmetrizable systems of conservation laws, SIAM J. Numer. Anal., 44, 1703-1720 (2006) · Zbl 1129.65062
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.