×

Approximate ultrametricity for random measures and applications to spin glasses. (English) Zbl 1361.60035

Summary: In this paper, we introduce a notion called “approximate ultrametricity,” which encapsulates the phenomenology of a sequence of random probability measures having supports that behave like ultrametric spaces insofar as they decompose into nested balls. We provide a sufficient condition for a sequence of random probability measures on the unit ball of an infinite-dimensional separable Hilbert space to admit such a decomposition, whose elements we call clusters. We also characterize the laws of the measures of the clusters by showing that they converge in law to the weights of a Ruelle probability cascade. These results apply to a large class of classical models in mean field spin glasses. We illustrate the notion of approximate ultrametricity by proving a conjecture of Talagrand regarding mixed \(p\)-spin glasses that is known to imply a prediction of Dotsenko-Franz-Mézard.

MSC:

60G57 Random measures
60K35 Interacting random processes; statistical mechanics type models; percolation theory
60F05 Central limit and other weak theorems
82B44 Disordered systems (random Ising models, random Schrödinger operators, etc.) in equilibrium statistical mechanics
82D30 Statistical mechanics of random media, disordered materials (including liquid crystals and spin glasses)

References:

[1] Aldous, D. J.Exchangeability and related topics. école d’été de probabilités de Saint‐Flour, XIII-1983, 1-198. Lecture Notes in Mathematics, 1117. Springer, Berlin, 1985. doi: 10.1007/BFb0099421 · Zbl 0562.60042
[2] Arguin, L.‐P.A remark on the infinite‐volume Gibbs measures of spin glasses. J. Math. Phys.49 (2008), no. 12, 125204, 8 pp. doi: 10.1063/1.2966281 · Zbl 1159.81300
[3] Arguin, L.‐P.; Zindy, O.Poisson‐Dirichlet statistics for the extremes of a log‐correlated Gaussian field. Ann. Appl. Probab.24 (2014), no. 4, 1446-1481. doi: 10.1214/13-AAP952 · Zbl 1301.60042
[4] Auffinger, A.; BenArous, G.Complexity of random smooth functions on the high‐dimensional sphere. Ann. Probab.41 (2013), no. 6, 4214-4247. doi: 10.1214/13-AOP862 · Zbl 1288.15045
[5] Auffinger, A.; BenArous, G.; Černý, J.Random matrices and complexity of spin glasses. Comm. Pure Appl. Math.66 (2013), no. 2, 165-201. doi: 10.1002/cpa.21422 · Zbl 1269.82066
[6] Auffinger, A.; Chen, W.‐K.On properties of Parisi measures. Probab. Theory Related Fields161 (2015), no. 3‐4, 817-850. doi: 10.1007/s00440-014-0563-y · Zbl 1322.60204
[7] Auffinger, A.; Chen, W.‐K.A duality principle in spin glasses. Preprint, 2016. arxiv:1605.01716 [math.PR]
[8] Bertoin, J.Random fragmentation and coagulation processes. Cambridge Studies in Advanced Mathematics, 102. Cambridge University Press, Cambridge, 2006. doi: 10.1017/CBO9780511617768 · Zbl 1107.60002
[9] Bovier, A.Statistical mechanics of disordered systems. Cambridge University Press, Cambridge, 2012. · Zbl 1246.82001
[10] Bovier, A.; Kurkova, I.Derrida’s generalised random energy models 1: Models with finitely many hierarchies. Ann. Inst. H. Poincaré Probab. Statist.40 (2004), no. 4, 439-480. doi: 10.1016/j.anihpb.2003.09.002 · Zbl 1121.82020
[11] Bovier, A.; Kurkova, I.Derrida’s generalized random energy models 2: Models with continuous hierarchies. Ann. Inst. H. Poincaré Probab. Statist. 40 (2004), no. 4, 481-495. doi: 10.1016/j.anihpb.2003.09.003 · Zbl 1121.82021
[12] Chen, W.‐K.The Aizenman‐Sims‐Starr scheme and Parisi formula for mixed p‐spin spherical models. Electron. J. Probab. 18 (2013), no. 94, 14 pp. doi: 10.1214/EJP.v18-2580 · Zbl 1288.60127
[13] Chen, W.‐K.; Panchenko, D.Temperature chaos in some spherical mixed p‐spin models. Preprint, 2016. arxiv:1608.02478 [math.PR]
[14] Contucci, P.; Mingione, E.; Starr, S.Factorization properties in d‐dimensional spin glasses. Rigorous results and some perspectives. J. Stat. Phys.151 (2013), no. 5, 809-829. doi: 10.1007/s10955-013-0730-z · Zbl 1284.82101
[15] Derrida, B.Random‐energy model: limit of a family of disordered models. Phys. Rev. Lett.45 (1980), no. 2, 79-82. doi: 10.1103/PhysRevLett.45.79
[16] Derrida, B.A generalization of the Random Energy Model which includes correlations between energies. J. Physique Lett.46 (1985), no. 9, 401-407. doi: 10.1051/jphyslet:01985004609040100
[17] Dotsenko, V.; Franz, S.; Mézard, M.Partial annealing and overfrustration in disordered systems. J. Phys. A27 (1994), no. 7, 2351. doi: 10.1088/0305-4470/27/7/016 · Zbl 0838.58051
[18] Dym, H.; McKean, H. P.Fourier series and integrals. Probability and Mathematical Statistics, 14. Academic Press, New York-London, 1972. · Zbl 0242.42001
[19] Jagannath, A.Variational and structural methods in mean field spin glasses. Ph.D. thesis, New York University, 2016.
[20] Jagannath, A.; Tobasco, I.Bounding the complexity of replica symmetry breaking for spherical spin glasses. arxiv:1607.02134 [math.PR]
[21] Kallenberg, O.Foundations of modern probability. Probability and Its Applications (New York). Springer, New York, 1997. · Zbl 0892.60001
[22] Mézard, M.; Parisi, G.; Sourlas, N.; Toulouse, G.; Virasoro, M.Replica symmetry breaking and the nature of the spin glass phase. J. Physique45 (1984), no. 5, 843-854. · Zbl 0968.82528
[23] Mézard, M.; Parisi, G.; Virasoro, M. A.Spin glass theory and beyond. World Scientific Lecture Notes in Physics, 9. World Scientific, Teaneck, N.J., 1987. · Zbl 0992.82500
[24] Panchenko, D.The Sherrington‐Kirkpatrick model: an overview. J. Stat. Phys.149 (2012), no. 2, 362-383. doi: 10.1007/s10955-012-0586-7 · Zbl 1259.82050
[25] Panchenko, D.On the Dovbysh‐Sudakov representation result. Electron. Commun. Probab. 15 (2010), paper no. 31, 330-338. doi: 10.1214/ECP.v15-1562 · Zbl 1226.60050
[26] Panchenko, D.Spin glass models from the point of view of spin distributions. Ann. Probab.41 (2013), no. 3A, 1315-1361. doi: 10.1214/11-AOP696 · Zbl 1281.60081
[27] Panchenko, D.The Parisi ultrametricity conjecture. Ann. of Math. (2)177 (2013), no. 1, 383-393. doi: 10.4007/annals.2013.177.1.8 · Zbl 1270.60060
[28] Panchenko, D.The Sherrington‐Kirkpatrick model. Springer Monographs in Mathematics. Springer, New York, 2013. doi: 10.1007/978-1-4614-6289-7 · Zbl 1266.82005
[29] Panchenko, D.Hierarchical exchangeability of pure states in mean field spin glass models. Probab. Theory Related Fields161 (2015), no. 3‐4, 619-650. doi: 10.1007/s00440-014-0555-y · Zbl 1320.60159
[30] Ruelle, D.A mathematical reformulation of Derrida’s REM and GREM. Comm. Math. Phys.108 (1987), no. 2, 225-239. · Zbl 0617.60100
[31] Subag, E.The complexity of spherical p‐spin models ‐ a second moment approach. Ann. Prob., forthcoming. Preprint, 2015. arxiv:1504.02251 [math.PR]
[32] Subag, E.The geometry of the Gibbs measure of pure spherical spin glasses. Preprint, 2016. arxiv:1604.00679 [math.PR]
[33] Subag, E.; Zeitouni, O.The extremal process of critical points of the pure p‐spin spherical spin glass model. Probab. Theory Related Fields, forthcoming. Preprint, 2015. arxiv:1509.03098 [math.PR]
[34] Talagrand, M.Spin glasses: a challenge for mathematicians. Cavity and mean field models. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, 46. Springer, Berlin, 2003. · Zbl 1033.82002
[35] Talagrand, M.Free energy of the spherical mean field model. Probab. Theory Related Fields134 (2006), no. 3, 339-382. doi: 10.1007/s00440-005-0433-8 · Zbl 1130.82019
[36] Talagrand, M.Parisi measures. J. Funct. Anal. 231 (2006), no. 2, 269-286. doi: 10.1016/j.jfa.2005.03.001 · Zbl 1117.82025
[37] Talagrand, M.Large deviations, Guerra’s and A.S.S. schemes, and the Parisi hypothesis. J. Stat. Phys. 126 (2007), no. 4‐5, 837-894. doi: 10.1007/s10955-006-9108-9 · Zbl 1133.82330
[38] Talagrand, M.Construction of pure states in mean field models for spin glasses. Probab. Theory Related Fields148 (2010), no. 3‐4, 601-643. doi: 10.1007/s00440-009-0242-6 · Zbl 1204.82037
[39] Talagrand, M.Mean field models for spin glasses. Volume I. Basic examples. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, 54. Springer, Berlin, 2011. doi: 10.1007/978-3-642-15202-3 · Zbl 1214.82002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.