×

Stochastic resonance in a linear fractional Langevin equation. (English) Zbl 1266.82046

Summary: The fractional Langevin equation is derived from the generalized Langevin equation driven by the additive fractional Gaussian noise. We investigate the stochastic resonance (SR) phenomenon in the underdamped linear fractional Langevin equation under the external periodic force and multiplicative symmetric dichotomous noise. Applying the Shapiro-Loginov formula and the Laplace transform technique, we obtain the exact expressions of the amplitude and signal-to-noise ratio (SNR) of the system. By studying the impacts of the driving frequency and the noise parameters, we find the non-monotonic behaviors of the output amplitude and SNR. The results indicate that the bona fide SR, conventional SR and the wide sense of SR phenomena occur in the proposed linear fractional system.

MSC:

82C31 Stochastic methods (Fokker-Planck, Langevin, etc.) applied to problems in time-dependent statistical mechanics
26A33 Fractional derivatives and integrals
44A10 Laplace transform
Full Text: DOI

References:

[1] Hänggi, P., Inchiosa, M.E., Fogliatti, D., Bulsara, A.R.: Nonlinear stochastic resonance: the saga of anomalous output-input gain. Phys. Rev. E 62, 6155–6163 (2000) · doi:10.1103/PhysRevE.62.6155
[2] Benzi, R., Sutera, A., Vulpiani, A.: The mechanism of stochastic resonance. J. Phys. A 14, L453–457 (1981) · doi:10.1088/0305-4470/14/11/006
[3] Benzi, R., Parisi, G., Sutera, A., Vulpiani, A.: Stochastic resonance in climatic change. Tellus 34, 10–16 (1982) · Zbl 0509.60059 · doi:10.1111/j.2153-3490.1982.tb01787.x
[4] Benzi, R.: Stochastic resonance: from climate to biology. Nonlinear Process. Geophys. 17, 431–441 (2010) · doi:10.5194/npg-17-431-2010
[5] Gammaitoni, L., Hänggi, P., Jung, P., Marchesoni, F.: Stochastic resonance: a remarkable idea that changed our perception of noise. Eur. Phys. J. B 69, 1–3 (2009) · doi:10.1140/epjb/e2009-00163-x
[6] McDonnell, M.D., Abbott, D.: What is stochastic resonance? Definitions, misconception, debates, and its relevance to biology. PLoS Comput. Biol. 5, e1000348 (2009) · doi:10.1371/journal.pcbi.1000348
[7] Wellens, T., Shatokhin, V., Buchleitner, A.: Stochastic resonance. Rep. Prog. Phys. 67, 45–105 (2004) · Zbl 1069.81086 · doi:10.1088/0034-4885/67/1/R02
[8] Berdichevsky, V., Gitterman, M.: Stochastic resonance in linear systems subject to multiplicative and additive noise. Phys. Rev. E 60, 1494–1499 (1999) · doi:10.1103/PhysRevE.60.1494
[9] Li, J.H., Han, Y.X.: Phenomenon of stochastic resonance caused by multiplicative asymmetric dichotomous noise. Phys. Rev. E 74, 051115 (2006)
[10] Gitterman, M.: Harmonic oscillator with fluctuating damping parameter. Phys. Rev. E 69, 041101 (2004) · Zbl 1048.82003
[11] Douglass, J.K., Wilkens, L., Pantazelou, E., Moss, F.: Noise enhancement of information transfer in crayfish mechanoreceptors by stochastic resonance. Nature 365, 337–340 (1993) · doi:10.1038/365337a0
[12] Wiesenfeld, K., Moss, F.: Stochastic resonance and the benefits of noise: from ice ages to crayfish and SQUIDs. Nature 373, 33–36 (1995) · doi:10.1038/373033a0
[13] Gitterman, M.: Classical harmonic oscillator with multiplicative noise. Physica A 352, 309–334 (2005) · doi:10.1016/j.physa.2005.01.008
[14] Gammaitoni, L., Marchesoni, F., Santucci, S.: Stochastic resonance as a bona fide resonance. Phys. Rev. Lett. 74, 1052–1055 (1995) · Zbl 0872.70015 · doi:10.1103/PhysRevLett.74.1052
[15] Gammaitoni, L., Hänggi, P., Jung, P., Marchesoni, F.: Stochastic resonance. Rev. Mod. Phys. 70, 223–287 (1998) · doi:10.1103/RevModPhys.70.223
[16] Goychuk, I.: Subdiffusive Brownian ratchets rocked by a periodic force. Chem. Phys. 375, 450–457 (2010) · doi:10.1016/j.chemphys.2010.04.009
[17] Goychuk, I., Kharchenoko, V.: Fractional Brownian motors and stochastic resonance. Phys. Rev. E 85, 051131 (2012) · doi:10.1103/PhysRevE.85.051131
[18] Hänggi, P., Marchesoni, F.: 100 years of Brownian motion. Chaos 15, 026101 (2005) · Zbl 1160.82332
[19] Klafter, J., Sokolov, I.M.: Anomalous diffusion spreads its wings. Phys. World 18, 29–32 (2005)
[20] Metzler, R., Klafter, J.: The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A, Math. Gen. 37, R161–208 (2004) · Zbl 1075.82018 · doi:10.1088/0305-4470/37/31/R01
[21] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000) · Zbl 0984.82032 · doi:10.1016/S0370-1573(00)00070-3
[22] Klafter, J., Lim, S.C., Metzler, R.: Fractional Dynamics: Recent Advances. World Scientific, Singapore (2012) · Zbl 1238.93005
[23] Metzler, R., Barkai, E., Klafter, J.: Deriving fractional Fokker-Planck equations from a generalised master equation. Europhys. Lett. 46, 431–436 (1999) · doi:10.1209/epl/i1999-00279-7
[24] Lutz, E.: Fractional Langevin equation. Phys. Rev. E 64, 051106 (2001) · Zbl 1308.82050 · doi:10.1103/PhysRevE.64.051106
[25] Kou, S.C.: Stochastic modeling in nanoscale biophysics: subdiffusion within proteins. Ann. Appl. Stat. 2, 501–535 (2008) · Zbl 1400.62272 · doi:10.1214/07-AOAS149
[26] Deng, W.H., Barkai, E.: Ergodic properties of fractional Brownian-Langevin motion. Phys. Rev. E 79, 011112 (2009)
[27] Burov, S., Barkai, E.: Critical exponent of the fractional Langevin equation. Phys. Rev. Lett. 100, 070601 (2008) · doi:10.1103/PhysRevLett.100.070601
[28] Kou, S.C., Xie, X.S.: Generalized Langevin equation with fractional Gaussian noise: subdiffusion within a single protein molecule. Phys. Rev. Lett. 93, 180603 (2004) · doi:10.1103/PhysRevLett.93.180603
[29] Min, W., English, B.P., Luo, G., Cherayil, B.J., Kou, S.C., Xie, X.S.: Fluctuating enzymes: lessons from single-molecule studies. Acc. Chem. Res. 38, 923–931 (2005) · doi:10.1021/ar040133f
[30] Min, W., Luo, G., Cherayil, B.J., Kou, S.C., Xie, X.S.: Observation of power-law memory kernel for fluctuations within a single protein molecule. Phys. Rev. Lett. 94, 198302 (2005) · doi:10.1103/PhysRevLett.94.198302
[31] Min, W., Xie, X.S.: Kramers model with a power-law friction kernel: dispersed kinetics and dynamic disorder of biochemical reactions. Phys. Rev. E 73, 010902 (2006) · doi:10.1103/PhysRevE.73.010902
[32] Yang, H., Luo, G., Karnchanaphanurach, P., Louie, T.M., Rech, I., Cova, S., Xun, L., Xie, X.S.: Protein conformational dynamics probed by single-molecule electron transfer. Science 302, 262–266 (2003) · doi:10.1126/science.1086911
[33] Soika, E., Mankin, R.: Response of a fractional oscillator to multiplicative trichotomous noise. WSEAS Trans. Biol. Biomed. 7, 21–30 (2010)
[34] Soika, E., Mankin, R.: Trichotomous-noise-induced stochastic resonance for a fractional oscillator. Adv. Biomed. Res. 1790(5125), 440–445 (2010)
[35] Soika, E., Mankin, R., Ainsaar, A.: Resonant behavior of a fractional oscillator with fluctuating frequency. Phys. Rev. E 81, 011141 (2010) · doi:10.1103/PhysRevE.81.011141
[36] Zhong, S.C., Gao, S.L., Wei, K., Ma, H.: The resonant behavior of an over-damped linear fractional Langevin equation. Acta Phys. Sin. 61, 170501 (2012)
[37] Shapiro, V.E., Loginov, V.M.: ”Formulae of differentiation” and their use for solving stochastic equations. Physica A 91, 563–574 (1978) · doi:10.1016/0378-4371(78)90198-X
[38] Laas, K., Mankin, R., Reiter, E.: Influence of memory time on the resonant behavior of an oscillatory system described by a generalized Langevin equation. Int. J. Math. Models Methods Appl. Sci. 5, 280–289 (2011)
[39] Soika, E., Mankin, R., Priimets, J.: Response of a generalized Langevin system to a multiplicative trichotomous noise. In: Recent Advances in Fluid Mechanics, Heat and Mass Transfer and Biology, pp. 87–93 (2011)
[40] Laas, K., Mankin, R., Reiter, E.: Stochastic resonance in the case of a generalized Langevin equation with a Mittag–Leffler friction kernel. In: Advances in Mathematical and Computational Methods, pp. 313–318 (2010)
[41] Soika, E., Mankin, R., Priimets, J.: Generalized Langevin equation with multiplicative trichotomous noise. Proc. Est. Acad. Sci., Phys. Math. 61, 113–127 (2012) · Zbl 1256.34046 · doi:10.3176/proc.2011.2.04
[42] Oppenheim, A.V., Willsky, A.S., Nawab, S.H.: Signals and Systems. Prentice Hall, China (2005)
[43] Li, P., Nie, L.R., Shu, C.Z., Hu, S., Shao, Q.: Effect of correlated dichotomous noises on stochastic resonance in a linear system. J. Stat. Phys. 146, 1184–1202 (2012) · Zbl 1241.82057 · doi:10.1007/s10955-012-0427-8
[44] Mandelbrot, B.B., Van Ness, J.W.: Fractional Brownian motions, fractional noises and applications. SIAM Rev. 10, 422–437 (1968) · Zbl 0179.47801 · doi:10.1137/1010093
[45] Jeon, J.H., Metzler, R.: Fractional Brownian motion and motion governed by the fractional Langevin equation in confined geometries. Phys. Rev. E 81, 021103 (2010) · doi:10.1103/PhysRevE.81.021103
[46] Kubo, R.: The fluctuation-dissipation theorem. Rep. Prog. Phys. 29, 255–284 (1966) · Zbl 0163.23102 · doi:10.1088/0034-4885/29/1/306
[47] Rekker, A., Mankin, R.: Energetic instability of a fractional oscillator. WSEAS Trans. Syst. 9, 203–212 (2010)
[48] Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999) · Zbl 0924.34008
[49] Jing, H.L.: Stochastic giant resonance. Phys. Rev. E 76, 021113 (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.