×

On the first Hochschild cohomology group of a cluster-tilted algebra. (English) Zbl 1360.16007

Summary: Given a cluster-tilted algebra \(B\), we study its first Hochschild cohomology group \(\mathrm {HH}^{1}(B)\) with coefficients in the \(B-B\)-bimodule \(B\). If \(C\) is a tilted algebra such that \(B\) is the relation-extension of \(C\), then we show that if \(B\) is tame, then \(\mathrm {HH}^{1}(B)\) is isomorphic, as a \(k\)-vector space, to the direct sum of \( \mathrm {HH}^{1}(C)\) with \(k^{n_{B,C}}\), where \(n_{B,C}\) is an invariant linking the bound quivers of \(B\) and \(C\). In the representation-finite case, \(\mathrm {HH}^{1}(B)\) can be read off simply by looking at the quiver of \(B\).

MSC:

16E40 (Co)homology of rings and associative algebras (e.g., Hochschild, cyclic, dihedral, etc.)
13F60 Cluster algebras
16G10 Representations of associative Artinian rings
16G20 Representations of quivers and partially ordered sets
16G60 Representation type (finite, tame, wild, etc.) of associative algebras
16S70 Extensions of associative rings by ideals

References:

[1] Assem, I.: Tilted algebras of type An. Comm. Algebra 10(19), 2121-2139 (1982) · Zbl 0495.16028 · doi:10.1080/00927878208822826
[2] Assem, I., Brüstle, T., Schiffler, R.: Cluster-tilted algebras as trivial extensions. Bull. Lond. Math. Soc. 40(1), 151-162 (2008) · Zbl 1182.16009 · doi:10.1112/blms/bdm107
[3] Assem, I., Brüstle, T., Schiffler, R.: Cluster-tilted algebras and slices. J. Algebra 319(8), 3464-3479 (2008) · Zbl 1159.16011 · doi:10.1016/j.jalgebra.2007.12.010
[4] Assem, I., Brüstle, T., Schiffler, R.: On the Galois coverings of a cluster-tilted algebra. J. Pure Appl. Algebra 213(7), 1450-1463 (2009) · Zbl 1183.16013 · doi:10.1016/j.jpaa.2008.12.008
[5] Assem, I., Brüstle, T., Charbonneau-Jodoin, G., Plamondon, P.G.: Gentle algebras arising from surface triangulations. Algebra Number Theory 4(2), 201-229 (2010) · Zbl 1242.16011 · doi:10.2140/ant.2010.4.201
[6] Assem, I., Bustamante, J.C., Igusa, K., Schiffler, R.: The first Hochschild cohomology group of a cluster tilted algebra revisited. Internat. J. Algebra Comput. 23(4), 729-744 (2013) · Zbl 1279.16008 · doi:10.1142/S0218196713400067
[7] Assem, I., Castonguay, D., Marcos, E.N., Trepode, S.: Strongly simply connected Schurian algebras and multiplicative bases. J. Algebra 283(1), 161-189 (2005) · Zbl 1133.16011 · doi:10.1016/j.jalgebra.2004.08.020
[8] Assem, I., Coelho, F.U., Trepode, S.: The bound quiver of a split extension. J. Algebra Appl. 7(4), 405-423 (2008) · Zbl 1191.16013 · doi:10.1142/S0219498808002928
[9] Assem, I., Redondo, M.J.: The first Hochschild cohomology group of a schurian cluster-tilted algebra. Manuscripta Math. 128(3), 373-388 (2009) · Zbl 1211.16007 · doi:10.1007/s00229-008-0238-z
[10] Assem, I., Simson, D., Skowronski, A.: Elements of the representation theory of associative algebras. Vol. 1. Techniques of representation theory. London Mathematical Society Student Texts, 65. Cambridge University Press, Cambridge, 2006. x+458 pp · Zbl 1092.16001
[11] Assem, I., Skowronski, A.: Iterated tilted algebras of type A \( \tilde{\mathbb{A}} \). Math. Z. 195(2), 269-290 (1987) · Zbl 0601.16022 · doi:10.1007/BF01166463
[12] Assem, I., Skowronski, A.: Algebras with cycle-finite derived categories. Math. Ann. 280(3), 441-463 (1988) · Zbl 0617.16017 · doi:10.1007/BF01456336
[13] Barot, M., Geiss, C., Zelevinsky, A.: Cluster algebras of finite type and positive symmetrizable matrices. J. London Math. Soc. 73(3), 545-564 (2006) · Zbl 1093.05070 · doi:10.1112/S0024610706022769
[14] Bardzell, M.J., Marcos, E.N.: H1 and presentations of finite dimensional algebras. Representations of algebras (São Paulo, 1999), 31-38, Lecture Notes in Pure and Appl. Math., 224. Dekker, New York (2002) · Zbl 1053.16006
[15] Buan, A., Marsh, R., Reineke, M., Reiten, I., Todorov, G.: Tilting theory and cluster combinatorics. Adv. Math. 204(2), 572-618 (2006) · Zbl 1127.16011 · doi:10.1016/j.aim.2005.06.003
[16] Buan, A., Marsh, R.J., Reiten, I.: Cluster-tilted algebras. Trans. Amer. Math. Soc. 359(1), 323-332 (electronic) (2007). · Zbl 1123.16009 · doi:10.1090/S0002-9947-06-03879-7
[17] Buan, A., Marsh, R.J., Reiten, I.: Cluster-tilted algebras of finite representation type. J. Algebra 306(2), 412-431 (2006) · Zbl 1116.16012 · doi:10.1016/j.jalgebra.2006.08.005
[18] Buan, A., Marsh, R.J., Reiten, I.: Cluster mutation via quiver representations. Comment. Math. Helv 83(1), 143-177 (2008) · Zbl 1193.16016 · doi:10.4171/CMH/121
[19] Buan, A., Reiten, I.: From tilted to cluster-tilted algebras of Dynkin type, preprint arXiv:math.RT/0510445 · Zbl 1116.16012
[20] Bustamante, J.C.: The classifying space of a bound quiver. J. Algebra 277(2), 431-455 (2004) · Zbl 1081.16021 · doi:10.1016/j.jalgebra.2004.02.024
[21] Cibils, C., Saorín, M.: The first cohomology group of an algebra with coefficients in a bimodule. J. Algebra 237(1), 121-141 (2001) · Zbl 0992.16009 · doi:10.1006/jabr.2000.8583
[22] Caldero, P., Chapoton, F., Schiffler, R.: Quivers with relations arising from clusters (An \(\mathbb{A}_n\) case). Trans. Amer. Math. Soc. 358, 1347-1364 (2006). electronic · Zbl 1137.16020 · doi:10.1090/S0002-9947-05-03753-0
[23] Caldero, P., Chapoton, F., Schiffler, R.: Quivers with relations and cluster tilted algebras. Algebr. Represent. Theory 9(4), 359-376 (2006) · Zbl 1127.16013 · doi:10.1007/s10468-006-9018-1
[24] Cartan, H., Eilenberg, S.: Homological algebra. Princeton University Press, Princeton, N. J., 1956. xv+390 pp · Zbl 0075.24305
[25] Derksen, H., Weyman, J., Zelevinsky, A.: Quivers with potentials and their representations II: Applications to cluster algebras. J. Amer. Math. Soc 23, 749-790 (2010) · Zbl 1208.16017 · doi:10.1090/S0894-0347-10-00662-4
[26] Fomin, S., Zelevinsky, A.: Cluster algebras. I. Foundations. J. Amer. Math. Soc. 15(2), 497-529 (2002). electronic · Zbl 1021.16017 · doi:10.1090/S0894-0347-01-00385-X
[27] Fomin, S., Zelevinsky, A.: Cluster algebras II. Finite type classification. Invent. Math. 154(1), 63-121 (2003) · Zbl 1054.17024 · doi:10.1007/s00222-003-0302-y
[28] Happel, D.: Triangulated categories in the representation theory of finite-dimensional algebras. London Mathematical Society Lecture Note Series, 119. Cambridge University Press, Cambridge, 1988. x+208 pp · Zbl 0635.16017
[29] Happel, D.: Hochschild cohomology of finite-dimensional algebras. Séminaire d’Algèbre Paul Dubreil et Marie-Paule Malliavin, 39ème Année (Paris, 1987/1988), 108-126, Lecture Notes in Math, p. 1989 (1404) · Zbl 0601.16022
[30] Huard, F., Liu, S.: Tilted string algebras. J. Pure Appl. Algebra 153(2), 151-164 (2000) · Zbl 0962.16009 · doi:10.1016/S0022-4049(99)00101-2
[31] Keller, B.: Deformed Calabi-Yau Completions. J. Reine Angew. Math. 654, 125-180 (2011) · Zbl 1220.18012
[32] Krause, H.: Maps between tree and modules. J. Algebra 137, 186-194 (1991) · Zbl 0715.16007 · doi:10.1016/0021-8693(91)90088-P
[33] Le Meur, P.: Topological invariants of piecewise hereditary algebras. Trans. Amer. Math. Soc. 363(4), 2143-2170 (2011) · Zbl 1228.16013 · doi:10.1090/S0002-9947-2010-05185-2
[34] Martínez-Villa, R., de la Peña, J.A.: The universal cover of a quiver with relations. J. Pure Appl. Algebra 30(3), 277-292 (1983) · Zbl 0522.16028 · doi:10.1016/0022-4049(83)90062-2
[35] de la Peña, J.A., Saorín, M.: On the first Hochschild cohomology group of an algebra. Manuscripta Math. 104(4), 431-442 (2001) · Zbl 0985.16008 · doi:10.1007/s002290170017
[36] Redondo, M.J., Román, L.: The Gerstenhaber algebra of string algebras, preprint arXiv:1504.02495[math.RA] · Zbl 1416.16009
[37] Ringel, C.M.: Tame algebras and integral quadratic forms. Lecture Notes in Mathematics, 1099. Springer-Verlag, Berlin, 1984. xiii+376 pp · Zbl 0546.16013
[38] Skowronski, A.: Simply connected algebras and Hochschild cohomologies. In Representations of algebras (Ottawa, 1992), vol. 14 of CMS Conf. Proc. Amer. Math. Soc., Providence, RI, 1993, pp. 431- 447 · Zbl 0806.16012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.