×

An individual-based model for the Lenski experiment, and the deceleration of the relative fitness. (English) Zbl 1358.92068

Summary: The Lenski experiment investigates the long-term evolution of bacterial populations. In this paper we present an individual-based probabilistic model that captures essential features of the experimental design, and whose mechanism does not include epistasis in the continuous-time (intraday) part of the model, but leads to an epistatic effect in the discrete-time (interday) part. We prove that under some assumptions excluding clonal interference, the rescaled relative fitness process converges in the large population limit to a power law function, similar to the one obtained by M. J. Wiser et al. [“Long-term dynamics of adaptation in asexual populations”, Science 342, No. 6164, 1364–1367 (2013; doi:10.1126/science.1243357)], there attributed to effects of clonal interference and epistasis.

MSC:

92D15 Problems related to evolution
60J85 Applications of branching processes

References:

[1] Aleshkyavichene, A. K., On the probabilities of large deviations for the maximum of sums of independent random variables, Theory Probab. Appl., 24, 1, 16-33 (1979) · Zbl 0432.60032
[2] Athreya, K. B., Rates of decay for the survival probability of a mutant gene, J. Math. Biol., 30, 577-581 (1992) · Zbl 0748.92006
[3] Athreya, K. B.; Ney, P. E., (Branching Processes. Branching Processes, Die Grundlehren der Mathematischen Wissenschaften, Band 196 (1972), Springer-Verlag: Springer-Verlag New York, Heidelberg) · Zbl 0259.60002
[4] Barrick, J. E.; Yu, D. S.; Yoon, S. H.; Jeong, H.; Oh, T. K.; Schneider, D.; Lenski, R. E.; Kim, J. F., Genome evolution and adaptation in a long-term experiment with Escherichia coli, Nature, 461, 7268, 1243-1247 (2009)
[5] Champagnat, N., A microscopic interpretation for adaptive dynamics trait substitution sequence models, Stochastic Process. Appl., 116, 1127-1160 (2006) · Zbl 1100.60055
[6] Champagnat, N.; Jabin, P.; Méléard, S., Adaptation in a stochastic multi-resources chemostat modell, J. Math. Pures Appl. (9), 101, 6, 755-788 (2014) · Zbl 1322.92052
[7] Chevin, L.-M., On measuring selection in experimental evolution, Biol. Lett., 7, 2, 210-213 (2011)
[8] Couce, A.; Tenaillon, O., The rule of declining adaptability in microbial evolution experiments, Front. Genet., 6, 99 (2015)
[9] Durrett, R.; Schweinsberg, J., Approximating selective sweeps, Theor. Popul. Biol., 66, 129-138 (2004) · Zbl 1111.92042
[10] Ethier, S. N.; Kurtz, T. G., (Markov Processes: Characterization and Convergence. Markov Processes: Characterization and Convergence, Wiley Series in Probability and Mathematical Statistics (1986), Wiley: Wiley New York) · Zbl 0592.60049
[11] Gerrish, P. J.; Lenski, R. E., The fate of competing beneficial mutations in an asexual population, Genetica, 102-103, 1-6, 127-144 (1998)
[12] Good, B. H.; Desai, M. M., The impact of macroscopic epistasis on long-term evolutionary dynamics, Genetics, 199, 1, 177-190 (2015)
[13] Haccou, P.; Jagers, P.; Vatutin, V. A., Branching Processes: Variation, Growth, and Extinction of Populations, Vol. 5 (2005), Cambridge University Press · Zbl 1118.92001
[14] Kaplan, N. L.; Hudson, R. R.; Langley, C. H., The hitchhiking effect revisited, Genetics, 123, 887-899 (1989)
[15] Kurtz, T. G., Limit theorems for sequences of jump Markov processes approximating ordinary differential processes, J. Appl. Probab., 8, 2, 344-356 (1971) · Zbl 0219.60060
[16] Lambert, A., Probability of fixation under weak selection: A branching process unifying approach, Theor. Popul. Biol., 69, 4, 419-441 (2006) · Zbl 1121.92051
[18] Lenski, R. E.; Rose, M. R.; Simpson, S. C.; Tadler, S. C., Long-term experimental evolution in escherichia coli. I. Adaptation and divergence during 2000 generations, Am. Nat., 138, 6, 1315-1341 (1991)
[19] Lenski, R. E.; Travisano, M., Dynamics of adaptation and diversification: a 10,000-generation experiment with bacterial populations, Proc. Natl. Acad. Sci. USA, 91, 15, 6808-6814 (1994)
[20] Lyons, R.; Peres, Y., Probability on Trees and Networks (2014), Cambridge University Press, in preparation. Available at: http://mypage.iu.edu/ rdlyons/
[23] Möhle, M.; Sagitov, S., A classification of coalescent processes for haploid exchangeable population models, Ann. Probab., 29, 4, 1547-1562 (2001) · Zbl 1013.92029
[24] Parsons, T., Asymptotic analysis of some stochastic models from population dynamics and population genetics (2012), University of Toronto, Available at: http://www.math.toronto.edu/
[25] Parsons, T. L.; Quince, C.; Plotkin, J. B., Absorption and fixation times for neutral and quasi-neutral populations with density dependence, Theor. Popul. Biol., 74, 4, 302-310 (2008) · Zbl 1210.92007
[26] Petrov, V. V.; Robinson, J., Large deviations for sums of independent non identically distributed random variables, Comm. Statist. Theory Methods, 37, 18, 2984-2990 (2008) · Zbl 1292.60038
[27] Schweinsberg, J., Coalescent processes obtained from supercritical Galton-Watson processes, Stochastic Process. Appl., 106, 1, 107-139 (2003) · Zbl 1075.60571
[28] Wakeley, J., Coalescent Theory: An Introduction, Vol. 1 (2009), Roberts & Company Publishers: Roberts & Company Publishers Greenwood Village, Cororado · Zbl 1366.92001
[29] Wiser, M. J.; Ribeck, N.; Lenski, R. E., Long-term dynamics of adaptation in asexual populations, Science, 342, 6164, 1364-1367 (2013)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.