×

Probability of fixation under weak selection: a branching process unifying approach. (English) Zbl 1121.92051

Summary: We link two-allele population models by J. B. S. Haldane [Proceedings Cambridge 23, 838–844 (1927; JFM 53.0516.05), see also Calcutta Math. Soc. 1958–1959, Part 1, 99–103 (1959; Zbl 0124.12605)] and R. A. Fisher [Proc. Royal Soc. Edinburg, 50, 204–219 (1930; JFM 56.1107.09)] with M. Kimura’s [J. Appl. Probab. 1, 177–232 (1964; Zbl 0134.38103)] diffusion approximations of the Wright-Fisher model, by considering continuous-state branching (CB) processes which are either independent (model I) or conditioned to have constant sum (model II). Recent works by the author allow us to further include logistic density-dependence (model III), which is ubiquitous in ecology.
In all models, each allele (mutant or resident) is then characterized by a triple demographic trait: intrinsic growth rate \(r\), reproduction variance \(\sigma\) and competition sensitivity \(c\). Generally, the fixation probability \(u\) of the mutant depends on its initial proportion \(p\), the total initial population size \(z\), and the six demographic traits. Under weak selection, we can linearize \(u\) in all models thanks to the same master formula \[ u= p+p(1-p) \{g_rs_r+ g_\sigma s_\sigma+ g_cs_c\}+ o(s_r,s_\sigma,s_c), \] where \(s_r= r'-r\), \(s_\sigma= \sigma- \sigma'\) and \(s_c= c-c'\) are selection coefficients, and \(g_r\), \(g_\sigma\), \(g_c\) are invasibility coefficients (\('\) refers to the mutant traits), which are positive and do not depend on \(p\). In particular, increased reproduction variance is always deleterious. We prove that in all three models \(g_\sigma= 1/\sigma\), and \(g_r= z/\sigma\) for small initial population sizes \(z\).
In model II, \(g_r= z/\sigma\) for all \(z\), and we display invasion isoclines of the ‘mean vs variance’ type. A slight departure from the isocline is shown to be more beneficial to alleles with low \(\sigma\) than with high \(r\).
In model III, \(g_c\) increases with \(z\) like \(\ln(z)/c\), and \(g_r(z)\) converges to a finite limit \(L>K/\sigma\), where \(K=r/c\) is the carrying capacity. For \(r>0\) the growth invasibility is above \(z/\sigma\) when \(z<K\), and below \(z/\sigma\) when \(z>K\), showing that classical models I and II underestimate the fixation probabilities in growing populations, and overestimate them in declining populations.

MSC:

92D15 Problems related to evolution
60J70 Applications of Brownian motions and diffusion theory (population genetics, absorption problems, etc.)
60J85 Applications of branching processes
Full Text: DOI

References:

[1] Athreya, K. B., Rates of decay for the survival probability of a mutant gene, J. Math. Biol., 30, 577-581 (1992) · Zbl 0748.92006
[2] Athreya, K. B.; Ney, P. E., Branching Processes (1972), Springer: Springer New York · Zbl 0259.60002
[3] Champagnat, N., 2006. A microscopic interpretation for adaptive dynamics trait substitution sequence models. Stoch. Process. Appl., in press.; Champagnat, N., 2006. A microscopic interpretation for adaptive dynamics trait substitution sequence models. Stoch. Process. Appl., in press. · Zbl 1100.60055
[4] Champagnat, N., Lambert, A., 2006. Discrete logistic branching populations and the canonical diffusion of adaptive dynamics. Submitted for publication.; Champagnat, N., Lambert, A., 2006. Discrete logistic branching populations and the canonical diffusion of adaptive dynamics. Submitted for publication. · Zbl 1128.92023
[5] De Oliveira, V. M.; Campos, P. R.A., Dynamics of fixation of advantageous mutations, Physica A, 337, 3-4, 546-554 (2004)
[6] Eshel, I., On the survival probability of slightly advantageous mutant gene with a general distribution of progeny size—a branching process model, J. Math. Biol., 12, 355-362 (1981) · Zbl 0464.92013
[7] Etheridge, A. M., Survival and extinction in a locally regulated population, Ann. Appl. Probab., 14, 188-214 (2004) · Zbl 1043.92030
[8] Ewens, W. J., Mathematical Population Genetics (1979), Springer: Springer Berlin, Heidelberg, New York · Zbl 0422.92011
[9] Feller, W., 1951. Diffusion processes in genetics. In: Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, pp. 227-246.; Feller, W., 1951. Diffusion processes in genetics. In: Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, pp. 227-246. · Zbl 0045.09302
[10] Fisher, R. A., On the dominance ratio, Proc. R. Soc. Edinburgh, 42, 321-341 (1922)
[11] Fisher, R. A., The distribution of gene ratios for rare mutations, Proc. R. Soc. Edinburgh, 50, 205-220 (1930) · JFM 56.1107.09
[12] Fisher, R. A., The Genetical Theory of Natural Selection (1958), Dover: Dover New York · JFM 56.1106.13
[13] Gavrilets, S., Fitness Landscapes and the Origin of Species. Monographs in Population Biology (2004), Princeton University Press: Princeton University Press Princeton, NJ
[14] Gillespie, J. H., Natural selection for within-generation variance in offspring number, Genetics, 76, 601-606 (1974)
[15] Gillespie, J. H., Natural selection for within-generation variance in offspring number II. Discrete haploid models, Genetics, 81, 403-413 (1975)
[16] Gillespie, J. H., Natural selection for variance in offspring number: a new evolutionary principle, Am. Nat., 111, 1010-1014 (1977)
[17] Gillespie, J.H., 1989. When not to use diffusion processes in population genetics. In: Feldman, M.W. (Ed.), Mathematical Evolutionary Theory 57-70. Collection of papers presented in honor of Samuel Karlin. Princeton University Press, Princeton, NJ.; Gillespie, J.H., 1989. When not to use diffusion processes in population genetics. In: Feldman, M.W. (Ed.), Mathematical Evolutionary Theory 57-70. Collection of papers presented in honor of Samuel Karlin. Princeton University Press, Princeton, NJ.
[18] Grey, D. R., Asymptotic behaviour of continuous-time, continuous state-space branching processes, J. Appl. Probab., 11, 669-677 (1974) · Zbl 0301.60060
[19] Haccou, P.; Iwasa, Y., Establishment probability in fluctuating environments: a branching process model, Theor. Popul. Biol., 50, 254-280 (1996) · Zbl 0867.92013
[20] Haccou, P.; Jagers, P.; Vatutin, V. A., Branching Processes. Variation, Growth, and Extinction of Populations. Series: Cambridge Studies in Adaptive Dynamics (No. 5) (2005), Cambridge University Press: Cambridge University Press Cambridge, MA · Zbl 1118.92001
[21] Haldane, J. B.S., A mathematical theory of natural and artificial selection. Part I, Trans. Cambridge Philos. Soc., 23, 19-41 (1924) · JFM 50.0341.05
[22] Haldane, J. B.S., A mathematical theory of natural and artificial selection. Part V: Selection and mutation, Proc. Cambridge Philos. Soc., 23, 838-844 (1927) · JFM 53.0516.05
[23] Haldane, J. B.S., The Causes of Evolution (1932), Harper and Brothers: Harper and Brothers New York · Zbl 0004.25803
[24] Haldane, J. B.S., The equilibrium between mutation and random extinction, Ann. Eugen., 9, 400-405 (1939) · Zbl 0022.25301
[25] Jagers, P., Branching Processes with Biological Applications (1975), Wiley: Wiley London, New York, Sydney · Zbl 0356.60039
[26] Jirina, M., Stochastic branching processes with continuous state space, Czech. Math. J., 8, 292-312 (1958) · Zbl 0168.38602
[27] Johnson, T.; Gerrish, P. J., The fixation probability of a beneficial allele in a population dividing by binary fission, Genetica, 115, 3, 283-287 (2002)
[28] Kimura, M., Some problems of stochastic processes in genetics, Ann. Math., 28, 882-901 (1957) · Zbl 0085.14101
[29] Kimura, M., On the probability of fixation of mutant genes in a population, Genetics, 47, 713-719 (1962)
[30] Kimura, M., Diffusion models in population genetics, J. Appl. Probab., 1, 177-232 (1964) · Zbl 0134.38103
[31] Kimura, M.; Ohta, T., On some principles governing molecular evolution, Proc. Nat. Acad. Sci. USA, 71, 2848-2852 (1974)
[32] Kimura, M.; Ohta, T., Probability of gene fixation in an expanding finite population, Proc. Nat. Acad. Sci. USA, 71, 3377-3379 (1974) · Zbl 0288.92014
[33] Lambert, A., 2001. The branching process conditioned to be never extinct. In: Arbres, excursions et processus de Lévy complètement asymétriques. Ph.D. Dissertation, Université P. et M. Curie, Paris, unpublished, \( \langle;\) http://www.biologie.ens.fr/ecologie/ecoevolution/lambert/lambert/qprocess.pdf \(\rangle;\).; Lambert, A., 2001. The branching process conditioned to be never extinct. In: Arbres, excursions et processus de Lévy complètement asymétriques. Ph.D. Dissertation, Université P. et M. Curie, Paris, unpublished, \( \langle;\) http://www.biologie.ens.fr/ecologie/ecoevolution/lambert/lambert/qprocess.pdf \(\rangle;\).
[34] Lambert, A., The branching process with logistic growth, Ann. Appl. Probab., 15, 1506-1535 (2005) · Zbl 1075.60112
[35] Lamperti, J., Continuous-state branching processes, Bull. Am. Math. Soc., 73, 382-386 (1967) · Zbl 0173.20103
[36] Lange, K.; Fan, R. Z., Branching process models for mutant genes in nonstationary populations, Theor. Popul. Biol., 51, 118-133 (1997) · Zbl 0889.92018
[37] Malécot, G., 1948. Les Mathématiques de l’Hérédité. Masson et \(C^{\mathit{ie}_{\_}} \), Paris.; Malécot, G., 1948. Les Mathématiques de l’Hérédité. Masson et \(C^{\mathit{ie}_{\_}} \), Paris. · Zbl 0031.17304
[38] Metz, J. A.J.; Nisbet, R. M.; Geritz, S. A.H., How should we define ‘fitness’ for general ecological scenarios?, Trends Ecol. Evol., 7, 6, 198-202 (1992)
[39] Moran, P. A.P., The survival of a mutant under selection. II, J. Aust. Math. Soc., 1, 485-491 (1959/1960) · Zbl 0102.36003
[40] Moran, P. A.P., The survival of a mutant under general conditions, Proc. Cambridge Philos. Soc., 57, 304-314 (1961) · Zbl 0104.38303
[41] Otto, S. P.; Whitlock, M. C., The probability of fixation in populations of changing size, Genetics, 146, 723-733 (1997)
[42] Quételet, A.L., 1835. Sur l’homme et le développement de ses facultés, essai de physique sociale, 2 vol., Bruxelles.; Quételet, A.L., 1835. Sur l’homme et le développement de ses facultés, essai de physique sociale, 2 vol., Bruxelles.
[43] Revuz, D.; Yor, M., Continuous Martingales and Brownian Motion (1999), Springer: Springer Berlin, Heidelberg, New York · Zbl 0917.60006
[44] Rogers, L.C.G., Williams, D., 1994. Diffusions, Markov Processes and Martingales, second ed., vol. 1. Foundations. Cambridge University Press, Cambridge, MA.; Rogers, L.C.G., Williams, D., 1994. Diffusions, Markov Processes and Martingales, second ed., vol. 1. Foundations. Cambridge University Press, Cambridge, MA. · Zbl 0826.60002
[45] Verhulst, P.F., 1838. Notice sur la loi que la population suit dans son accroissement. Correspondance mathématique et physique X, 113-121.; Verhulst, P.F., 1838. Notice sur la loi que la population suit dans son accroissement. Correspondance mathématique et physique X, 113-121.
[46] Wright, S., Evolution in Mendelian populations, Genetics, 16, 97-159 (1931)
[47] Wright, S., The differential equation of the distribution of gene frequencies, Proc. Nat. Acad. Sci. USA, 31, 382-389 (1945) · Zbl 0063.08327
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.