×

Convex sets associated to \(C^{\ast}\)-algebras. (English) Zbl 1358.46049

Summary: For a separable unital \(C^\ast\)-algebra \(\mathfrak{A}\) and a separable McDuff \(\mathrm{II}_{1}\)-factor \(M\), we show that the space \(\mathbb{H} \text{om}_w(\mathfrak{A}, M)\) of weak approximate unitary equivalence classes of unital homomorphisms \(\mathfrak{A} \to M\) may be considered as a closed, bounded, convex subset of a separable Banach space – a variation on N. Brown’s convex structure \(\mathbb{H} \text{om}(N, R^{\mathcal{U}})\). Many separable unital \(C^\ast\)-algebras, including all (separable unital) nuclear \(C^\ast\)-algebras, have the property that for any McDuff \(\mathrm{II}_{1}\)-factor \(M\), \(\mathbb{H} \text{om}_w(\mathfrak{A},M)\) is affinely homeomorphic to the trace space of \(\mathfrak{A}\). In general \(\mathbb{H} \text{om}_w(\mathfrak{A},M)\) and the trace space of \(\mathfrak{A}\) do not share the same data (several examples are provided). We characterize extreme points of \(\mathbb{H} \text{om}_w(\mathfrak{A}, M)\) in many cases, and we give two different conditions – one necessary and the other sufficient – for extremality in general. The universality of \(C^\ast(\mathbb{F}_\infty)\) is reflected in the fact that for any unital separable \(\mathfrak{A}, \mathbb{H} \text{om}_w(\mathfrak{A},M)\) may be embedded as a face in \(\mathbb{H} \text{om}_w(C^\ast(\mathbb{F}_\infty),M)\). We also extend Brown’s construction to apply more generally to \(\mathbb{H}\text{om}(\mathfrak{A},M^{\mathcal{U}})\).

MSC:

46L05 General theory of \(C^*\)-algebras
46L36 Classification of factors
Full Text: DOI

References:

[1] Anderson, J., A C*-algebra \(A\) for which \(Ext(A)\) is not a group, Ann. of Math. (2), 107, 3, 455-458 (1978) · Zbl 0378.46057
[2] Arveson, W., Notes on extensions of \(C^\ast \)-algebras, Duke Math. J., 44, 2, 329-355 (1977) · Zbl 0368.46052
[3] Blackadar, B. E., Traces on simple AF \(C^\ast \)-algebras, J. Funct. Anal., 38, 2, 156-168 (1980) · Zbl 0443.46037
[4] Bosa, J.; Brown, N. P.; Sato, Y.; Tikuisis, A.; White, S.; Winter, W., Covering dimension of \(C^\ast \)-algebras and 2-coloured classification, preprint · Zbl 1448.46005
[5] Brown, N. P., Connes’ embedding problem and Lance’s WEP, Int. Math. Res. Not. IMRN, 10, 501-510 (2004) · Zbl 1085.46041
[6] Brown, N. P., Invariant means and finite representation theory of \(C^\ast \)-algebras, Mem. Amer. Math. Soc., 184, 865 (2006), viii+105 · Zbl 1111.46030
[7] Brown, N. P., Topological dynamical systems associated to \(II_1\)-factors, Adv. Math., 227, 4, 1665-1699 (2011), With an appendix by Narutaka Ozawa · Zbl 1229.46041
[8] Brown, N. P.; Capraro, V., Groups associated to \(II_1\)-factors, J. Funct. Anal., 264, 2, 493-507 (2013) · Zbl 1270.46054
[9] Brown, N. P.; Ozawa, N., \(C^\ast \)-Algebras and Finite-Dimensional Approximations, Grad. Stud. Math., vol. 88 (2008), American Mathematical Society: American Mathematical Society Providence, RI · Zbl 1160.46001
[10] Capraro, V.; Fritz, T., On the axiomatization of convex subsets of Banach spaces, Proc. Amer. Math. Soc., 141, 6, 2127-2135 (2013) · Zbl 1277.52001
[11] Capraro, V.; Lupini, M., Introduction to Sofic and Hyperlinear Groups and Connes’ Embedding Conjecture, Lecture Notes in Math., vol. 2136 (2015), Springer: Springer Cham, With an appendix by Vladimir Pestov · Zbl 1383.20002
[12] Connes, A., Classification of injective factors. Cases \(II_1, II_\infty, III_\lambda, \lambda \neq 1\), Ann. of Math. (2), 104, 1, 73-115 (1976) · Zbl 0343.46042
[13] Dadarlat, M., Nonnuclear subalgebras of AF algebras, Amer. J. Math., 122, 3, 581-597 (2000) · Zbl 0964.46034
[14] Ding, H.; Hadwin, D., Approximate equivalence in von Neumann algebras, Sci. China Ser. A, 48, 2, 239-247 (2005) · Zbl 1094.46030
[15] Farah, I.; Hart, B.; Sherman, D., Model theory of operator algebras III: elementary equivalence and \(II_1\) factors, Bull. Lond. Math. Soc., 46, 3, 609-628 (2014) · Zbl 1303.46049
[16] Haagerup, U., A new proof of the equivalence of injectivity and hyperfiniteness for factors on a separable Hilbert space, J. Funct. Anal., 62, 2, 160-201 (1985) · Zbl 0586.46047
[17] Haagerup, U.; Thorbjørnsen, S., A new application of random matrices: \(Ext(C_{red}^\ast(F_2))\) is not a group, Ann. of Math. (2), 162, 2, 711-775 (2005) · Zbl 1103.46032
[18] Hadwin, D., Free entropy and approximate equivalence in von Neumann algebras, (Operator Algebras and Operator Theory. Operator Algebras and Operator Theory, Shanghai, 1997. Operator Algebras and Operator Theory. Operator Algebras and Operator Theory, Shanghai, 1997, Contemp. Math., vol. 228 (1998), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 111-131 · Zbl 1047.46507
[19] Hadwin, D.; Li, W., A note on approximate liftings, Oper. Matrices, 3, 1, 125-143 (2009) · Zbl 1181.46042
[20] Jung, K., Amenability, tubularity, and embeddings into \(R^\omega \), Math. Ann., 338, 1, 241-248 (2007) · Zbl 1121.46052
[21] McDuff, D., Central sequences and the hyperfinite factor, Proc. Lond. Math. Soc., 3, 21, 443-461 (1970) · Zbl 0204.14902
[22] Ozawa, N., Solid von Neumann algebras, Acta Math., 192, 1, 111-117 (2004) · Zbl 1072.46040
[23] Ozawa, N., There is no separable universal \(II_1\)-factor, Proc. Amer. Math. Soc., 132, 2, 487-490 (2004), (electronic) · Zbl 1041.46045
[24] Ozawa, N., An example of a solid von Neumann algebra, Hokkaido Math. J., 38, 3, 557-561 (2009) · Zbl 1187.46048
[25] Popa, S., Independence properties in subalgebras of ultraproduct \(II_1\) factors, J. Funct. Anal., 266, 9, 5818-5846 (2014) · Zbl 1305.46052
[26] Sakai, S., On automorphism groups of \(II_1\)-factors, Tohoku Math. J., 2, 26, 423-430 (1974) · Zbl 0303.46060
[27] Sherman, D., Unitary orbits of normal operators in von Neumann algebras, J. Reine Angew. Math., 605, 95-132 (2007) · Zbl 1120.46042
[28] Sherman, D., Notes on automorphisms of ultrapowers of \(II_1\) factors, Studia Math., 195, 3, 201-217 (2009) · Zbl 1183.46067
[29] Voiculescu, D., A non-commutative Weyl-von Neumann theorem, Rev. Roumaine Math. Pures Appl., 21, 1, 97-113 (1976) · Zbl 0335.46039
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.