×

Amenability, tubularity, and embeddings into \(\mathcal{R}^{\omega}\). (English) Zbl 1121.46052

Summary: Suppose that \(M\) is a tracial von Neumann algebra embeddable into \(\mathcal{R}^{\omega}\) (the ultraproduct of the hyperfinite \(\text{II}_{1}\)-factor) and \(X\) is an \(n\)-tuple of selfadjoint generators for \(M\). Denote by \(\Gamma (X ; m, k, \gamma)\) the microstate space of \(X\) of order \((m, k,\gamma)\). We say that \(X\) is tubular if for any \(\epsilon > 0\) there exists \(m \in \mathbb{N}\) and \(\gamma > 0\) such that if \((x_{1},\dots, x_{n}), (y_{1}, \dots, y_{n}) \in \Gamma(X;m,k,\gamma)\), then there exists a \(k \times k\) unitary \(u\) satisfying \(|ux_iu^* - y_i|_2 < \epsilon\) for each \(1 \leq i \leq n\). We show that the following conditions are equivalent: \(M\) is amenable (i.e., injective); \(X\) is tubular; any two embeddings of \(M\) into \(\mathcal{R}^{\omega}\) are conjugate by a unitary \(u \in \mathcal {R}^{\omega}\).

MSC:

46L54 Free probability and free operator algebras
46L10 General theory of von Neumann algebras

References:

[1] Connes A. (1976). Classification of injective factors: Cases II1, II III{\(\lambda\)}, {\(\lambda\)} 1. Ann. Math. 104(2): 73–115 · Zbl 0343.46042 · doi:10.2307/1971057
[2] Connes A. (1994). Noncommutative Geometry. Academic, New York · Zbl 0818.46076
[3] Choi M.-D. and Effros E. (1976). Separable nuclear C *-algebras and injectivity. Duke Math. J. 43(2): 309–322 · Zbl 0382.46026 · doi:10.1215/S0012-7094-76-04328-3
[4] Choi M.-D. and Effros E. (1977). Nuclear C *-algebras and injectivity: the general case. Indiana Univ. Math. J. 26(3): 443–446 · Zbl 0378.46052 · doi:10.1512/iumj.1977.26.26034
[5] Effros E. and Lance E.C. (1977). Tensor products of operator algebras. Adv. Math. 25(1): 1–34 · Zbl 0372.46064 · doi:10.1016/0001-8708(77)90085-8
[6] Hakeda, J., Tomiyama, J.: On some extension properties of von Neumann algebras. Tôhoku Math. J. 19(2), 315–323, 46.65 (1967) · Zbl 0175.14201
[7] Jung K. (2003). The free entropy dimension of hyperfinite von Neumann algebras. Trans. AMS 355: 5053–5089 · Zbl 1028.46096 · doi:10.1090/S0002-9947-03-03286-0
[8] Schwartz, J.: Two finite, non-hyperfinite, non-isomorphic factors. Comm. Pure Appl. Math. 16, 19–26, 46.65 (1963) · Zbl 0131.33201
[9] Voiculescu D. (2002). Free entropy. Bull. Lond. Math. Soc. 34(3): 257–332 · Zbl 1036.46051 · doi:10.1112/S0024609301008992
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.