×

Exact solutions of the Liénard- and generalized Liénard-type ordinary nonlinear differential equations obtained by deforming the phase space coordinates of the linear harmonic oscillator. (English) Zbl 1358.34003

Summary: We investigate the connection between the linear harmonic oscillator equation and some classes of second-order nonlinear ordinary differential equations of Liénard and generalized Liénard type, which physically describe important oscillator systems. By means of a method inspired by quantum mechanics, and which consists of the deformation of the phase space coordinates of the harmonic oscillator, we generalize the equation of motion of the classical linear harmonic oscillator to several classes of strongly nonlinear differential equations. The first integrals, and a number of exact solutions of the corresponding equations, are explicitly obtained. The devised method can be further generalized to derive explicit general solutions of nonlinear second-order differential equations unrelated to the harmonic oscillator. Applications of the obtained results for the study of the traveling wave solutions of the reaction-convection-diffusion equations, and of the large amplitude-free vibrations of a uniform cantilever beam, are also presented.

MSC:

34A05 Explicit solutions, first integrals of ordinary differential equations
34A34 Nonlinear ordinary differential equations and systems
34A25 Analytical theory of ordinary differential equations: series, transformations, transforms, operational calculus, etc.
70K40 Forced motions for nonlinear problems in mechanics

References:

[1] Liénard A (1928) Étude des oscillations entretenues. Revue générale de l’électricité 23:901-912, 946-954 · Zbl 0070.30703
[2] Levinson N, Smith O (1942) A general equation for relaxation oscillations. Duke Math J 9:382-403 · Zbl 0061.18908 · doi:10.1215/S0012-7094-42-00928-1
[3] Andronov AA, Leontovich EA, Gordon II, Maier AG (1973) Qualitative theory of second order dynamic systems. Wiley, New York · Zbl 0282.34022
[4] Chandrasekar VK, Senthilvelan M, Kundu A, Lakshmanan M (2006) A nonlocal connection between certain linear and nonlinear ordinary differential equations/oscillators. J Phys A 39:9743-9754 · Zbl 1107.34003 · doi:10.1088/0305-4470/39/31/006
[5] Liu X-G, Tang M-L, Martin RR (2008) Periodic solutions for a kind of Linard equation. J Comput Appl Math 219:263-275 · Zbl 1152.34047 · doi:10.1016/j.cam.2007.07.024
[6] Zou L, Chen X, Zhang W (2008) Local bifurcations of critical periods for cubic Linard equations with cubic damping. J Comput Appl Math 222:404-410 · Zbl 1163.34349 · doi:10.1016/j.cam.2007.11.005
[7] Pandey SN, Bindu PS, Senthilvelan M, Lakshmanan M (2009) A group theoretical identification of integrable cases of the Linard-type equation \[x{^{\prime \prime }}+f(x)x+g(x)\] x″+f(x)x+g(x)=0: I. Equations having nonmaximal number of Lie point symmetries. J Math Phys 50:082702-082702-19 · Zbl 1328.34031 · doi:10.1063/1.3187783
[8] Pandey SN, Bindu PS, Senthilvelan M, Lakshmanan M (2009) A group theoretical identification of integrable equations in the Linard-type equation \[x{^{\prime \prime }}+f(x)x+g(x)\] x″+f(x)x+g(x)=0: II. Equations having maximal Lie point symmetries. J Math Phys 50:102701-102701-25 · Zbl 1283.34036 · doi:10.1063/1.3204075
[9] Banerjee D, Bhattacharjee JK (2010) Renormalization group and Liénard systems of differential equations. J Phys A 43:062001 · Zbl 1198.34043 · doi:10.1088/1751-8113/43/6/062001
[10] Messias M, Alves G, Márcio R (2011) Time-periodic perturbation of a Liénard equation with an unbounded homoclinic loop. Physica D 240:1402-1409 · Zbl 1237.34095 · doi:10.1016/j.physd.2011.06.006
[11] Mickens RE (2010) Truly nonlinear oscillations: harmonic balance, parameter expansions, iteration, and averaging methods. World Scientific, London · Zbl 1221.34001 · doi:10.1142/7561
[12] Nayfeh AH, Mook DT (1995) Nonlinear oscillations. Wiley, New York · Zbl 0418.70001 · doi:10.1002/9783527617586
[13] DiBenedetto E (2011) Classical mechanics: theory and mathematical modeling. Springer, New York · Zbl 1208.70001 · doi:10.1007/978-0-8176-4648-6
[14] Mak MK, Harko T (2012) New integrability case for the Riccati equation. Appl Math Comput 218:10974-10981 · Zbl 1282.34018
[15] Mak MK, Harko T (2013) New further integrability cases for the Riccati equation. Appl Math Comput 219:7465-7471 · Zbl 1293.34004
[16] Harko T, Lobo FSN, Mak MK (2014) Analytical solutions of the Riccati equation with coefficients satisfying integral or differential conditions with arbitrary functions. Univ J Appl Math 2:109-118
[17] Euler N (1997) Transformation properties of \[\frac{{\rm d}^2x}{{\rm d}t^2} +f_1 (t)\frac{{\rm d}x}{{\rm d}t} +f_2 (t) x+f_3 (t) x^n = 0\] d2xdt2+f1(t)dxdt+f2(t)x+f3(t)xn=0. J Nonlinear Math Phys 4:310-337 · Zbl 0949.34028 · doi:10.2991/jnmp.1997.4.3-4.7
[18] Harko T, Lobo FSN, Mak MK (2013) Integrability cases for the anharmonic oscillator equation. J Pure Appl Math 10:115-129
[19] Harko T, Lobo FSN, Mak MK (2014) A class of exact solutions of the Linard type ordinary non-linear differential equation. J Eng Math 89:193-205 · Zbl 1359.34003 · doi:10.1007/s10665-014-9696-3
[20] Harko T, Lobo FSN, Mak MK (2013) A Chiellini type integrability condition for the generalized first kind Abel differential equation. Univ J Appl Math 1:101-104
[21] Mancas SC, Rosu HC (2013) Integrable dissipative nonlinear second order differential equations via factorizations and Abel equations. Phys Lett A 377:1234-1238 · Zbl 1301.34006 · doi:10.1016/j.physleta.2013.04.024
[22] Rosu HC, Cornejo-Perez O, Chen P (2012) Nonsingular parametric oscillators Darboux-related to the classical harmonic oscillator. Europhys Lett 100:60006 · doi:10.1209/0295-5075/100/60006
[23] Mancas SC, Rosu HC (2015) Integrable Abel equations and Vein’s Abel equation. arXiv:1505.03548 · Zbl 1338.34009
[24] Chandrasekar VK, Senthilvelan M, Lakshmanan M (2005) Unusual Liénard-type nonlinear oscillator. Phys Rev E 72:066203 · doi:10.1103/PhysRevE.72.066203
[25] Chandrasekar VK, Senthilvelan M, Lakshmanan M (2007) On the general solution for the modified Emden-type equation \[\ddot{x} + \alpha x\dot{x}+ \beta x^3 = 0\] x¨+αxx˙+βx3=0. J Phys A 40:4717-4727 · Zbl 1128.34003 · doi:10.1088/1751-8113/40/18/003
[26] Chandrasekar VK, Sheeba JH, Pradeep G, Divyasreea RS, Lakshmanan M (2012) A class of solvable coupled nonlinear oscillators with amplitude independent frequencies. Phys Lett A 376:2188-2194 · Zbl 1266.34060 · doi:10.1016/j.physleta.2012.04.058
[27] Calogero F (2008) Isochronous systems. Oxford University Press, Oxford · Zbl 1160.34037 · doi:10.1093/acprof:oso/9780199535286.001.0001
[28] Durga Devi A, Gladwin Pradeep R, Chandrasekar VK, Lakshmanan M (2013) Method of generating N-dimensional isochronous nonsingular Hamiltonian systems. J Nonlinear Math Phys 20:78-93 · Zbl 1421.70033 · doi:10.1080/14029251.2013.792474
[29] Chithiika Ruby V, Senthilvelan M, Lakshmanan M (2012) Exact quantization of a PT-symmetric (reversible) Liénard-type nonlinear oscillator. J Phys A 45:382002 · Zbl 1252.81055 · doi:10.1088/1751-8113/45/38/382002
[30] Gubbiottia G, Nucci MC (2014) Noether symmetries and the quantization of a Liénard-type nonlinear oscillator. J Nonlinear Math Phys 21:248-264 · Zbl 1421.81038 · doi:10.1080/14029251.2014.905299
[31] Herbst RT (1956) The equivalence of linear and non-linear equations. Proc Am Math Soc 7:95-97 · Zbl 0070.30703 · doi:10.1090/S0002-9939-1956-0076115-0
[32] Dasarathy BV (1975) Equivalent linear models for non-linear non-autonomous systems. J Sound Vib 42:447-452 · Zbl 0323.34032 · doi:10.1016/0022-460X(75)90275-8
[33] Finch MR (1989) The first integral of a class of non-linear second order ordinary differential equations. J Sound Vib 130:321-329 · Zbl 1235.34037 · doi:10.1016/0022-460X(89)90557-9
[34] Sawada K, Osawa T (1978) On exactly soluble nonlinear ordinary differential equations of the Liénard type. J Phys Soc Jpn 44:1730-1732 · Zbl 1334.34061 · doi:10.1143/JPSJ.44.1730
[35] Merzbacher E (1998) Quantum mechanics. Wiley, New York · Zbl 0102.42701
[36] Reyes MA, Rosu HC, Gutierrez MR (2011) Self-adjoint oscillator operator from modifed factorization. Phys Lett A 375:2145-2148 · Zbl 1242.81074 · doi:10.1016/j.physleta.2011.04.012
[37] Arcos-Olalla R, Reyes MA, Rosu HC (2012) An alternative factorization of the quantum harmonic oscillator and two-parameter family of self-adjoint operators. Phys Lett A 376:2860-2865 · Zbl 1252.93113 · doi:10.1016/j.physleta.2012.09.024
[38] Ibragimov NH (2009) A practical course in differential equations and mathematical modelling. World Scientific, London · doi:10.1142/7573
[39] Gilding BH, Kersner R (1996) The characterization of reaction-convection-diffusion processes by travelling waves. J Differ Equ 124:27-79 · Zbl 0840.35051 · doi:10.1006/jdeq.1996.0002
[40] Mei Z (2000) Numerical bifurcation analysis for reaction-diffusion equations. Springer, Berlin · Zbl 0952.65105 · doi:10.1007/978-3-662-04177-2
[41] Wilhelmsson H, Lazzaro E (2001) Reaction-diffusion problems in the physics of hot plasmas. Institute of Physics Publishing, Bristol · doi:10.1887/0750306157
[42] Gilding BH, Kersner R (2004) Travelling waves in nonlinear diffusion convection reaction. Birkhäuser, Basel · Zbl 1073.35002 · doi:10.1007/978-3-0348-7964-4
[43] Harko T, Mak MK (2015) Travelling wave solutions of the reaction-diffusion mathematical model of glioblastoma growth: an Abel equation based approach. Math Biosci Eng 12:41-69 · Zbl 1316.35070 · doi:10.3934/mbe.2015.12.41
[44] Solovyova A, Schuck P, Costenaro L, Ebel C (2001) Non-ideality by sedimentation velocity of halophilic malate dehydrogenase in complex solvents. Biophys J 81:1868-1880 · doi:10.1016/S0006-3495(01)75838-9
[45] Follain N, Valleton J-M, Lebrun L, Alexandre B, Schaetzel P, Metayer M, Marais S (2010) Simulation of kinetic curves in mass transfer phenomena for a concentration-dependent diffusion coefficient in polymer membranes. J Membr Sci 349:195-207 · doi:10.1016/j.memsci.2009.11.044
[46] Joannés S, Mazé L, Bunsell AR (2014) A concentration-dependent diffusion coefficient model for water sorption in composite. Compos Struct 108:111-118 · doi:10.1016/j.compstruct.2013.09.007
[47] Hamdan MN, Dado MHF (1997) Large aplitude free vibrations of a uniform cantilever beam carrying an intermediate lumped mass and rotary inertia. J Sound Vib 206:151-168 · doi:10.1006/jsvi.1997.1081
[48] He JH (2005) Homotopy perturbation method for bifurcation of nonlinear problems. Int J Nonlinear Sci Numer Simul 6:207-208 · Zbl 1401.65085
[49] Yildirim A (2010) Determination of periodic solutions for nonlinear oscillators with fractional powers by He’s modified Lindstedt-Poincaré method. Meccanica 45:1-6 · Zbl 1184.70018 · doi:10.1007/s11012-009-9212-4
[50] Ramos JI (2009) An artificial parameter Linstedt-Poincaré method for oscillators with smooth odd nonlinearities. Chaos Solitons Fractals 41:380-393 · Zbl 1198.65150 · doi:10.1016/j.chaos.2008.01.009
[51] Herisanu N, Marinca V (2010) Explicit analytical approximation to large-amplitude non-linear oscillations of a uniform cantilever beam carrying an intermediate lumped mass and rotary inertia. Meccanica 45:847-855 · Zbl 1258.74102 · doi:10.1007/s11012-010-9293-0
[52] Akbarzade M, Khanb Y (2012) Dynamic model of large amplitude non-linear oscillations arising in the structural engineering: analytical solutions. Math Comput Model 55:480-489 · Zbl 1255.74031 · doi:10.1016/j.mcm.2011.07.043
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.