Skip to main content
Log in

Exact solutions of the Liénard- and generalized Liénard-type ordinary nonlinear differential equations obtained by deforming the phase space coordinates of the linear harmonic oscillator

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

We investigate the connection between the linear harmonic oscillator equation and some classes of second-order nonlinear ordinary differential equations of Liénard and generalized Liénard type, which physically describe important oscillator systems. By means of a method inspired by quantum mechanics, and which consists of the deformation of the phase space coordinates of the harmonic oscillator, we generalize the equation of motion of the classical linear harmonic oscillator to several classes of strongly nonlinear differential equations. The first integrals, and a number of exact solutions of the corresponding equations, are explicitly obtained. The devised method can be further generalized to derive explicit general solutions of nonlinear second-order differential equations unrelated to the harmonic oscillator. Applications of the obtained results for the study of the traveling wave solutions of the reaction–convection–diffusion equations, and of the large amplitude-free vibrations of a uniform cantilever beam, are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liénard A (1928) Étude des oscillations entretenues. Revue générale de l’électricité 23:901–912, 946–954

  2. Levinson N, Smith O (1942) A general equation for relaxation oscillations. Duke Math J 9:382–403

    Article  MathSciNet  MATH  Google Scholar 

  3. Andronov AA, Leontovich EA, Gordon II, Maier AG (1973) Qualitative theory of second order dynamic systems. Wiley, New York

    MATH  Google Scholar 

  4. Chandrasekar VK, Senthilvelan M, Kundu A, Lakshmanan M (2006) A nonlocal connection between certain linear and nonlinear ordinary differential equations/oscillators. J Phys A 39:9743–9754

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Liu X-G, Tang M-L, Martin RR (2008) Periodic solutions for a kind of Linard equation. J Comput Appl Math 219:263–275

    Article  ADS  MathSciNet  Google Scholar 

  6. Zou L, Chen X, Zhang W (2008) Local bifurcations of critical periods for cubic Linard equations with cubic damping. J Comput Appl Math 222:404–410

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Pandey SN, Bindu PS, Senthilvelan M, Lakshmanan M (2009) A group theoretical identification of integrable cases of the Linard-type equation \(x{^{\prime \prime }}+f(x)x+g(x)\)=0: I. Equations having nonmaximal number of Lie point symmetries. J Math Phys 50:082702–082702-19

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Pandey SN, Bindu PS, Senthilvelan M, Lakshmanan M (2009) A group theoretical identification of integrable equations in the Linard-type equation \(x{^{\prime \prime }}+f(x)x+g(x)\)=0: II. Equations having maximal Lie point symmetries. J Math Phys 50:102701–102701-25

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Banerjee D, Bhattacharjee JK (2010) Renormalization group and Liénard systems of differential equations. J Phys A 43:062001

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Messias M, Alves G, Márcio R (2011) Time-periodic perturbation of a Liénard equation with an unbounded homoclinic loop. Physica D 240:1402–1409

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Mickens RE (2010) Truly nonlinear oscillations: harmonic balance, parameter expansions, iteration, and averaging methods. World Scientific, London

    Book  MATH  Google Scholar 

  12. Nayfeh AH, Mook DT (1995) Nonlinear oscillations. Wiley, New York

    Book  MATH  Google Scholar 

  13. DiBenedetto E (2011) Classical mechanics: theory and mathematical modeling. Springer, New York

    Book  MATH  Google Scholar 

  14. Mak MK, Harko T (2012) New integrability case for the Riccati equation. Appl Math Comput 218:10974–10981

    MathSciNet  MATH  Google Scholar 

  15. Mak MK, Harko T (2013) New further integrability cases for the Riccati equation. Appl Math Comput 219:7465–7471

    MathSciNet  MATH  Google Scholar 

  16. Harko T, Lobo FSN, Mak MK (2014) Analytical solutions of the Riccati equation with coefficients satisfying integral or differential conditions with arbitrary functions. Univ J Appl Math 2:109–118

    Google Scholar 

  17. Euler N (1997) Transformation properties of \(\frac{{\rm d}^2x}{{\rm d}t^2} +f_1 (t)\frac{{\rm d}x}{{\rm d}t} +f_2 (t) x+f_3 (t) x^n = 0\). J Nonlinear Math Phys 4:310–337

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Harko T, Lobo FSN, Mak MK (2013) Integrability cases for the anharmonic oscillator equation. J Pure Appl Math 10:115–129

    Google Scholar 

  19. Harko T, Lobo FSN, Mak MK (2014) A class of exact solutions of the Linard type ordinary non-linear differential equation. J Eng Math 89:193–205

    Article  MathSciNet  Google Scholar 

  20. Harko T, Lobo FSN, Mak MK (2013) A Chiellini type integrability condition for the generalized first kind Abel differential equation. Univ J Appl Math 1:101–104

    Google Scholar 

  21. Mancas SC, Rosu HC (2013) Integrable dissipative nonlinear second order differential equations via factorizations and Abel equations. Phys Lett A 377:1234–1238

    Article  MathSciNet  MATH  Google Scholar 

  22. Rosu HC, Cornejo-Perez O, Chen P (2012) Nonsingular parametric oscillators Darboux-related to the classical harmonic oscillator. Europhys Lett 100:60006

    Article  ADS  Google Scholar 

  23. Mancas SC, Rosu HC (2015) Integrable Abel equations and Vein’s Abel equation. arXiv:1505.03548

  24. Chandrasekar VK, Senthilvelan M, Lakshmanan M (2005) Unusual Liénard-type nonlinear oscillator. Phys Rev E 72:066203

    Article  ADS  Google Scholar 

  25. Chandrasekar VK, Senthilvelan M, Lakshmanan M (2007) On the general solution for the modified Emden-type equation \(\ddot{x} + \alpha x\dot{x}+ \beta x^3 = 0\). J Phys A 40:4717–4727

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Chandrasekar VK, Sheeba JH, Pradeep G, Divyasreea RS, Lakshmanan M (2012) A class of solvable coupled nonlinear oscillators with amplitude independent frequencies. Phys Lett A 376:2188–2194

    Article  ADS  MATH  Google Scholar 

  27. Calogero F (2008) Isochronous systems. Oxford University Press, Oxford

    Book  MATH  Google Scholar 

  28. Durga Devi A, Gladwin Pradeep R, Chandrasekar VK, Lakshmanan M (2013) Method of generating N-dimensional isochronous nonsingular Hamiltonian systems. J Nonlinear Math Phys 20:78–93

    Article  MathSciNet  Google Scholar 

  29. Chithiika Ruby V, Senthilvelan M, Lakshmanan M (2012) Exact quantization of a PT-symmetric (reversible) Liénard-type nonlinear oscillator. J Phys A 45:382002

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Gubbiottia G, Nucci MC (2014) Noether symmetries and the quantization of a Liénard-type nonlinear oscillator. J Nonlinear Math Phys 21:248–264

    Article  MathSciNet  Google Scholar 

  31. Herbst RT (1956) The equivalence of linear and non-linear equations. Proc Am Math Soc 7:95–97

    Article  MathSciNet  MATH  Google Scholar 

  32. Dasarathy BV (1975) Equivalent linear models for non-linear non-autonomous systems. J Sound Vib 42:447–452

    Article  ADS  MATH  Google Scholar 

  33. Finch MR (1989) The first integral of a class of non-linear second order ordinary differential equations. J Sound Vib 130:321–329

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Sawada K, Osawa T (1978) On exactly soluble nonlinear ordinary differential equations of the Liénard type. J Phys Soc Jpn 44:1730–1732

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Merzbacher E (1998) Quantum mechanics. Wiley, New York

    MATH  Google Scholar 

  36. Reyes MA, Rosu HC, Gutierrez MR (2011) Self-adjoint oscillator operator from modifed factorization. Phys Lett A 375:2145–2148

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Arcos-Olalla R, Reyes MA, Rosu HC (2012) An alternative factorization of the quantum harmonic oscillator and two-parameter family of self-adjoint operators. Phys Lett A 376:2860–2865

    Article  ADS  MathSciNet  Google Scholar 

  38. Ibragimov NH (2009) A practical course in differential equations and mathematical modelling. World Scientific, London

    Book  Google Scholar 

  39. Gilding BH, Kersner R (1996) The characterization of reaction–convection–diffusion processes by travelling waves. J Differ Equ 124:27–79

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Mei Z (2000) Numerical bifurcation analysis for reaction–diffusion equations. Springer, Berlin

    Book  MATH  Google Scholar 

  41. Wilhelmsson H, Lazzaro E (2001) Reaction–diffusion problems in the physics of hot plasmas. Institute of Physics Publishing, Bristol

    Book  Google Scholar 

  42. Gilding BH, Kersner R (2004) Travelling waves in nonlinear diffusion convection reaction. Birkhäuser, Basel

    Book  MATH  Google Scholar 

  43. Harko T, Mak MK (2015) Travelling wave solutions of the reaction–diffusion mathematical model of glioblastoma growth: an Abel equation based approach. Math Biosci Eng 12:41–69

    Article  MathSciNet  MATH  Google Scholar 

  44. Solovyova A, Schuck P, Costenaro L, Ebel C (2001) Non-ideality by sedimentation velocity of halophilic malate dehydrogenase in complex solvents. Biophys J 81:1868–1880

    Article  Google Scholar 

  45. Follain N, Valleton J-M, Lebrun L, Alexandre B, Schaetzel P, Metayer M, Marais S (2010) Simulation of kinetic curves in mass transfer phenomena for a concentration-dependent diffusion coefficient in polymer membranes. J Membr Sci 349:195–207

    Article  Google Scholar 

  46. Joannés S, Mazé L, Bunsell AR (2014) A concentration-dependent diffusion coefficient model for water sorption in composite. Compos Struct 108:111–118

    Article  Google Scholar 

  47. Hamdan MN, Dado MHF (1997) Large aplitude free vibrations of a uniform cantilever beam carrying an intermediate lumped mass and rotary inertia. J Sound Vib 206:151–168

    Article  ADS  Google Scholar 

  48. He JH (2005) Homotopy perturbation method for bifurcation of nonlinear problems. Int J Nonlinear Sci Numer Simul 6:207–208

    MathSciNet  Google Scholar 

  49. Yildirim A (2010) Determination of periodic solutions for nonlinear oscillators with fractional powers by He’s modified Lindstedt–Poincaré method. Meccanica 45:1–6

    Article  MathSciNet  MATH  Google Scholar 

  50. Ramos JI (2009) An artificial parameter Linstedt–Poincaré method for oscillators with smooth odd nonlinearities. Chaos Solitons Fractals 41:380–393

    Article  ADS  MATH  Google Scholar 

  51. Herisanu N, Marinca V (2010) Explicit analytical approximation to large-amplitude non-linear oscillations of a uniform cantilever beam carrying an intermediate lumped mass and rotary inertia. Meccanica 45:847–855

    Article  MathSciNet  MATH  Google Scholar 

  52. Akbarzade M, Khanb Y (2012) Dynamic model of large amplitude non-linear oscillations arising in the structural engineering: analytical solutions. Math Comput Model 55:480–489

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank to the three anonymous referees for comments and suggestions that helped us to significantly improve our manuscript. The authors are very grateful to Dr. Christian Böhmer for his careful reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiberiu Harko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harko, T., Liang, SD. Exact solutions of the Liénard- and generalized Liénard-type ordinary nonlinear differential equations obtained by deforming the phase space coordinates of the linear harmonic oscillator. J Eng Math 98, 93–111 (2016). https://doi.org/10.1007/s10665-015-9812-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-015-9812-z

Keywords

Mathematics Subject Classification

Navigation