×

Fourier spectral approximations to the dynamics of 3D fractional complex Ginzburg-Landau equation. (English) Zbl 1357.65196

Summary: We study the fractional complex Ginzburg-Landau equation with periodic initial boundary value condition in three spatial dimensions. The problem is discretized fully by Fourier Galerkin spectral method. The dynamical behavior of the resulting discrete system is examined. The existence of a global attractor is established, and the corresponding convergence is proved through the error estimates of the discrete solution. Numerical stability and convergence of the discrete scheme are proved.

MSC:

65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
Full Text: DOI

References:

[1] C. Bjorland, Nonlocal tug-of-war and the infinity fractional Laplacian,, Comm. Pure Appl. Math., 65, 337 (2012) · Zbl 1235.35278
[2] K. Bogdan, On the Schrödinger operator based on the fractional Laplacian,, Bull. Polish Acad. Sci. Math., 49, 291 (2001) · Zbl 1006.31005
[3] T. Bojdecki, Fractional Brownian motion via fractional Laplacian,, Statist. Probab. Lett., 44, 107 (1999) · Zbl 0941.60067 · doi:10.1016/S0167-7152(99)00014-0
[4] C. Bu, On the Cauchy problem for the 1+2 complex Ginzburg-Landau equation,, J. Aust. Math. Soc. Ser. B, 36, 313 (1995) · Zbl 0829.35119 · doi:10.1017/S0334270000010468
[5] L. Caffarelli, An extension problem related to the fractional Laplacian,, Comm. Partial Differential Equations, 32, 1245 (2007) · Zbl 1143.26002 · doi:10.1080/03605300600987306
[6] L. Caffarelli, Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian,, Invent. Math., 171, 425 (2008) · Zbl 1148.35097 · doi:10.1007/s00222-007-0086-6
[7] C. Canuto, Approximation results for orthogonal polynomials in Sobolev spaces,, Math. Comp., 38, 201 (1982) · Zbl 0567.41008 · doi:10.1090/S0025-5718-1982-0637287-3
[8] C. R. Doering, Low-dimensional behavior in the complex Ginzburg-Landau equation,, Nonlinearity, 1, 279 (1988) · Zbl 0655.58021
[9] C. R. Doering, Weak and strong solutions of the complex Ginzburg-Landau equation,, Physica D, 71, 258 (1994) · Zbl 0810.35119 · doi:10.1016/0167-2789(94)90150-3
[10] J. Dong, Space-time fractional Schrödinger equation with time-independent potentials,, J. Math. Anal. Appl., 344, 1005 (2008) · Zbl 1140.81357 · doi:10.1016/j.jmaa.2008.03.061
[11] Z. E. A. Fellah, Propagation of ultrasonic pulses in porous elastic solids: A time domain analysis with fractional derivatives, 5-th International Conference on Mathematical and Numerical Aspects of Wave Propagation., Santiago de Compostela (2000) · Zbl 0993.74028
[12] R. L. Frank, Uniqueness of non-linear ground states for fractional Laplacians in \(\mathbbR^n\),, Acta Math., 210, 261 (2013) · Zbl 1307.35315
[13] V. L. Ginzburg, Nobel lecture: On superconductivity and superfluidity (what I have and have not managed to do) as well as on the “physical minimum” at the beginning of the XXI century,, Reviews of Modern Physics, 76, 981 (2004) · doi:10.1103/RevModPhys.76.981
[14] V. L. Ginzburg, On the theory of superconductivity,, On Superconductivity and Superfluidity, 113 (2009) · Zbl 1205.82008 · doi:10.1007/978-3-540-68008-6_4
[15] B. Guo, Global well-posedness for the fractional nonlinear Schrödinger equation,, Commun. Partial Differential Equations, 36, 247 (2010) · Zbl 1211.35268 · doi:10.1080/03605302.2010.503769
[16] B. Guo, Existence of the global smooth solution to the period boundary value problem of fractional nonlinear Schrödinger equation,, Appl. Math. and Comput., 204, 468 (2008) · Zbl 1163.35483 · doi:10.1016/j.amc.2008.07.003
[17] B. Guo, Solutions for the fractional Landau-Lifshitz equation,, J. Math. Anal. Appl., 361, 131 (2010) · Zbl 1179.35320 · doi:10.1016/j.jmaa.2009.09.009
[18] H. Lu, Dynamics of the 3-D fractional complex Ginzburg-Landau equation,, J. Differential Equation, 259, 5276 (2015) · Zbl 1328.35279 · doi:10.1016/j.jde.2015.06.028
[19] H. Lu, Dynamics of the 3D fractional Ginzburg-Landau equation with multiplicative noise on an unbounded domain,, Commun. in Math. Sci., 14, 273 (2016) · Zbl 1331.37070 · doi:10.4310/CMS.2016.v14.n1.a11
[20] H. Lu, Asymptotic dynamics of 2D fractional complex Ginzburg-Landau equation,, I. J. Bifurcation and Chaos, 23 (2013) · Zbl 1284.35456 · doi:10.1142/S0218127413502027
[21] S. Lü, Asymptotic behavior of three-dimensional Ginzburg-Landau type equation,, Dynamics of Continuous, 13, 209 (2006) · Zbl 1091.35034
[22] S. Lü, Exponential attractor for the 3D Ginzburg-Landau type equation,, Nonlinear Analysis, 67, 3116 (2007) · Zbl 1162.35014
[23] S. Lü, The dynamical behavior of the Ginzburg-Landau equation and its Fourier spectral approximation,, Numer. Math., 22, 1 (2000) · Zbl 0962.65108
[24] V. G. Mazja, <em>Sobolev Spaces</em>,, Springer-Verlag (1985) · Zbl 0692.46023 · doi:10.1007/978-3-662-09922-3
[25] E. W. Montroll, On the wonderful world of random walks,, in:J. Leibowitz and E.W. Montroll (Eds.), 1 (1984) · Zbl 0556.60027
[26] R. R. Nigmatullin, The realization of the generalized transfer equation in a medium with fractal geometry,, Phys. stat. solidi. B, 133, 425 (1986) · doi:10.1002/pssb.2221330150
[27] K. Promislow, Induced trajectories and approximate inertial manifolds for the Ginzburg-Landau partial differential equation,, Physica D, 41, 232 (1990) · Zbl 0696.35177 · doi:10.1016/0167-2789(90)90125-9
[28] X. Pu, Global weak solutions of the fractional Landau-Lifshitz-Maxwell equation,, J. Math. Anal. Appl., 372, 86 (2010) · Zbl 1197.35304 · doi:10.1016/j.jmaa.2010.06.035
[29] A. I. Saichev, Fractional kinetic equations: Solutions and applications,, Chaos, 7, 753 (1997) · Zbl 0933.37029 · doi:10.1063/1.166272
[30] S. Salsa, Optimal regularity in lower dimensional obstacle problems. Subelliptic PDE’s and applications to geometry and finance,, Lect. Notes Semin. Interdiscip. Mat., 217 (2007)
[31] J. Shen, Long-time stability and convergence for fully discrete nonlinear Galerkin methods,, Appl. Anal., 38, 201 (1990) · Zbl 0684.65095 · doi:10.1080/00036819008839963
[32] M. F. Shlesinger, Strange Kinetics,, Nature, 363, 31 (1993) · doi:10.1038/363031a0
[33] Y. Sire, Fractional Laplacian phase transitions and boundary reactions: A geometric inequality and a symmetry result,, J. Funct. Anal., 256, 1842 (2009) · Zbl 1163.35019 · doi:10.1016/j.jfa.2009.01.020
[34] R. Temam, <em>Infinite Dimension Dynamical Systems in Mechanics and Physics,</em>, Springer-Verlag (1995)
[35] V. E. Tarasov, Fractional Ginzburg-Landau equation for fractal media,, Physica A, 354, 249 (2005) · doi:10.1016/j.physa.2005.02.047
[36] V. E. Tarasov, Fractional dynamics of coupled oscillators with long-range interaction,, Chaos, 16 (2006) · Zbl 1152.37345
[37] H. Weitzner, Some applications of fractional derivatives,, Communications in Nonlinear Science and Numerical Simulation, 8, 273 (2003) · Zbl 1041.35073
[38] G. M. Zaslavsky, Chaos, fractional kinetics, and anomalous transport,, Physics Reports, 371, 461 (2002) · Zbl 0999.82053 · doi:10.1016/S0370-1573(02)00331-9
[39] G. M. Zaslavsky, <em>Hamiltonian Chaos and Fractional Dynamics</em>,, Oxford (2005) · Zbl 1083.37002
[40] G. M. Zaslavsky, Weak mixing and anomalous kinetics along filamented surfaces,, Chaos, 11, 295 (2001) · Zbl 1080.37584 · doi:10.1063/1.1355358
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.