×

Weak mixing and anomalous kinetics along filamented surfaces. (English) Zbl 1080.37584

Summary: We consider chaotic properties of a particle in a square billiard with a horizontal bar in the middle. Such a system can model field-line windings of the merged surfaces. The system has weak-mixing properties with zero Lyapunov exponent and entropy, and it can be also interesting as an example of a system with intermediate chaotic properties, between the integrability and strong mixing. We show that the transport is anomalous and that its properties can be linked to the ergodic properties of continued fractions. The distribution of Poincaré recurrences, distribution of the displacements, and the moments of the truncated distribution of the displacements are obtained. Connections between different exponents are found. It is shown that the distribution function of displacements and its truncated moments as a function of time exhibit log-periodic oscillations (modulations) with a universal period \(T_{\log} = \pi^2/12 \ln 2\). We note that similar results are valid for a family of billiard, particularly for billiards with square-in-square geometry.

MSC:

37J99 Dynamical aspects of finite-dimensional Hamiltonian and Lagrangian systems
37A25 Ergodicity, mixing, rates of mixing
37D50 Hyperbolic systems with singularities (billiards, etc.) (MSC2010)
70H99 Hamiltonian and Lagrangian mechanics
70K55 Transition to stochasticity (chaotic behavior) for nonlinear problems in mechanics
Full Text: DOI

References:

[1] DOI: 10.1016/0167-2789(86)90062-X · Zbl 0593.58016 · doi:10.1016/0167-2789(86)90062-X
[2] DOI: 10.1016/0167-2789(86)90062-X · Zbl 0593.58016 · doi:10.1016/0167-2789(86)90062-X
[3] Zorich A., Ergodic Theory Dynam. Sys. 17 pp 1477– (1997) · Zbl 0958.37002 · doi:10.1017/S0143385797086215
[4] DOI: 10.1016/0167-2789(81)90024-5 · Zbl 1194.37150 · doi:10.1016/0167-2789(81)90024-5
[5] Artuso R., Chaos 10 pp 189– (2000) · Zbl 1055.81022 · doi:10.1103/PhysRevE.55.6384
[6] Artuso R., Phys. Rev. E 55 pp 6384– (1997) · doi:10.1103/PhysRevE.55.6384
[7] Cox S. G., Phys. Rev. E 84 pp 2362– (2000)
[8] DOI: 10.1016/0167-2789(94)90254-2 · Zbl 1194.37163 · doi:10.1016/0167-2789(94)90254-2
[9] DOI: 10.1016/0167-2789(94)90254-2 · Zbl 1194.37163 · doi:10.1016/0167-2789(94)90254-2
[10] DOI: 10.1063/1.166272 · Zbl 0933.37029 · doi:10.1063/1.166272
[11] Katok A., Commun. Math. Phys. 111 pp 151– (1987) · Zbl 0631.58020 · doi:10.1007/BF01239021
[12] DOI: 10.1103/PhysRevE.56.5310 · doi:10.1103/PhysRevE.56.5310
[13] DOI: 10.1063/1.166252 · Zbl 0933.37024 · doi:10.1063/1.166252
[14] DOI: 10.1063/1.166361 · Zbl 0987.37023 · doi:10.1063/1.166361
[15] Zaslavsky G. M., Chaos 10 pp 135– (2000) · Zbl 0965.82015 · doi:10.1063/1.166481
[16] Meiss J., Chaos 7 pp 139– (1997) · Zbl 0933.37022 · doi:10.1063/1.166245
[17] Kuznetsov L., Phys. Rev. E 61 pp 3777– (2000) · doi:10.1103/PhysRevE.61.3777
[18] DOI: 10.1103/PhysRevE.60.4770 · doi:10.1103/PhysRevE.60.4770
[19] DOI: 10.1103/PhysRevE.55.4909 · doi:10.1103/PhysRevE.55.4909
[20] DOI: 10.1073/pnas.78.6.3287 · Zbl 0461.60085 · doi:10.1073/pnas.78.6.3287
[21] DOI: 10.1016/S0370-1573(97)00076-8 · doi:10.1016/S0370-1573(97)00076-8
[22] Johansen A., J. Mod. Phys. C 9 pp 433– (1998) · doi:10.1142/S0129183198000339
[23] Johansen A., Physica D 138 pp 302– (2000) · doi:10.1142/S0129183198000339
[24] DOI: 10.1103/PhysRevE.59.3761 · doi:10.1103/PhysRevE.59.3761
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.