×

Multidimensional limit theorems for homogeneous sums: a survey and a general transfer principle. (English) Zbl 1356.60038

Summary: We provide a synthetic yet comprehensive review of the so-called fourth moment criterion, and of universal limit theorems, for multilinear homogeneous sums, in both the classical and the free probability settings. In addition to such a general picture, we also prove a novel multidimensional transfer principle for central limit theorems involving homogeneous sums with leptokurtic or mesokurtic entries. The key step will be to prove that joint and component-wise convergence are indeed equivalent for these random objects, encompassing well-known results concerning Wiener and Wigner chaoses.

MSC:

60F05 Central limit and other weak theorems
60F17 Functional limit theorems; invariance principles
46L54 Free probability and free operator algebras

References:

[1] M. Anshelevich, S.T. Belinschi, M. Bozejko and F. Lehner, Free infinite divisibility for q-Gaussians. Math. Res. Lett.17 (2010) 905-916. · Zbl 1226.46057 · doi:10.4310/MRL.2010.v17.n5.a8
[2] O. Arizmendi, Convergence of the fourth moment and infinite divisibility. Probab. Math. Stat.33 (2013) 201-212. · Zbl 1291.46059
[3] O. Arizmendi and A. Jaramillo, Convergence of the fourth moment and infinite divisibility: quantitative estimates. Electron. Commun. Probab.19 (2014) 1-12. · Zbl 1317.46046 · doi:10.1214/ECP.v19-3354
[4] O. Arizmendi and V. Pérez-Abreu, On the non-classical infinite divisibility of power semicircle distributions. Commun. Stochastic Anal.4 (2010) 161-178. · Zbl 1331.60031
[5] E. Azmoodeh, S. Campese and G. Poly, Fourth Moment Theorems for Markov Diffusion Generators. J. Funct. Anal.266 (2014) 2341-2359. · Zbl 1292.60078 · doi:10.1016/j.jfa.2013.10.014
[6] E. Azmoodeh, D. Malicet, G. Mijoule and G. Poly, Generalization of the Nualart-Peccati criterion. Ann. Probab.44 (2016) 924-954. · Zbl 1342.60026 · doi:10.1214/14-AOP992
[7] B. Bhattacharya, P. Diaconis and S. Mukherjee, Universal limit theorems in graph coloring problems with connections to extremal combinatorics. Preprint (2014). · Zbl 1360.05051
[8] P. Biane and R. Speicher, Stochastic analysis with respect to free Brownian motion and analysis on Wigner space. Probab. Theory Relat. Fields112 (1998) 373-409. · Zbl 0919.60056 · doi:10.1007/s004400050194
[9] S. Bourguin, Poisson convergence on the free Poisson algebra. Bernoulli21 (2015) 2139-2156. · Zbl 1375.46047 · doi:10.3150/14-BEJ638
[10] S. Bourguin and G. Peccati, Semicircular limits on the free Poisson chaos: counterexamples to a transfer principle. J. Funct. Anal.267 (2013) 963-997. · Zbl 1308.46071 · doi:10.1016/j.jfa.2014.05.015
[11] S. Campese, I. Nourdin, G. Peccati and G. Poly, Multivariate Gaussian approximation on Markov chaoses. Preprint (2015). · Zbl 1345.60012
[12] L.H.Y. Chen, Stein meets Malliavin in Normal Approximation. Acta Math. Vietnamica40 (2015) 205. · Zbl 1322.60028 · doi:10.1007/s40306-015-0141-0
[13] L.H.Y. Chen and G. Poly, Stein’s method, Malliavin calculus, Dirichlet forms and the fourth moment theorem. Festschrift Masatoshi Fukushima. Edited by Z.-Q. Chen, N. Jacob, M. Takeda and T. Uemura. In vol. 17 of Interdiscipl. Math. Sci. (2015) 107-130. · Zbl 1343.60012
[14] P. de Jong, A central limit theorem for generalized multilinear forms. J. Multivar. Anal.34 (1987) 275-289. · Zbl 0709.60019 · doi:10.1016/0047-259X(90)90040-O
[15] A. Deya and I. Nourdin, Convergence of Wigner integrals to the Tetilla law. ALEA, Lat. Am. J. Probab. Math. Stat.9 (2012) 101-127. · Zbl 1285.46053
[16] A. Deya and I. Nourdin, Invariance principles for homogeneous sums of free random variables. Bernoulli20 (2013) 586-603. · Zbl 1292.60041 · doi:10.3150/12-BEJ498
[17] A. Deya, S. Norredine and I. Nourdin, Fourth Moment Theorem and q-Brownian Motion. Commun. Math. Phys.321 (2013) 113-134. · Zbl 1278.46054 · doi:10.1007/s00220-012-1631-8
[18] P. Eichelsbacher and C. Thäle, New Berry-Esseen bounds for non-linear functionals of Poisson random measures. Electron. J. Probab.19 (2014) 1-25. · Zbl 1307.60066 · doi:10.1214/EJP.v19-3061
[19] T. Fissler and C. Thäle, A four moment theorem for Gamma limits on a Poisson chaos. Preprint (2015). · Zbl 1361.60016
[20] T. Kemp, I. Nourdin, G. Peccati and R. Speicher, Wigner Chaos and the fourth moment. Ann. Probab.40 (2011) 1577-1635. · Zbl 1277.46033 · doi:10.1214/11-AOP657
[21] R. Lachiéze-Rey and G. Peccati, Fine Gaussian fluctuations on the Poisson space, I: contractions, cumulants and geometric random graphs. Electron. J. Probab.18 (2013) 1-32. · Zbl 1294.60099 · doi:10.1214/EJP.v18-1958
[22] E. Mossel, Gaussian bounds for noise correlation of functions. Geometric Funct. Anal.19 (2010) 1713-1756. · Zbl 1205.60051 · doi:10.1007/s00039-010-0047-x
[23] E. Mossel, R. O’Donnell and K. Oleszkiewicz, Noise stability of functions with low influences: invariance and optimality. Ann. Math.171 (2010) 295-341. · Zbl 1201.60031 · doi:10.4007/annals.2010.171.295
[24] A. Nica and R. Speicher, Lectures on the Combinatorics of Free Probability. Cambridge University Press (1990). · Zbl 1133.60003
[25] I. Nourdin and G. Peccati, Noncentral convergence of multiple integrals. Ann. Probab.37 (2009) 1412-1426. · Zbl 1171.60323 · doi:10.1214/08-AOP435
[26] I. Nourdin and G. Peccati, Normal approximations with Malliavin calculus: from Stein’s method to universality. Cambridge Tracts in Mathematics. Cambridge University Press (2012). · Zbl 1266.60001
[27] I. Nourdin and G. Peccati. Poisson approximations on the free Wigner chaos. Ann. Probab.41 (2013) 2709-2723. · Zbl 1281.46057 · doi:10.1214/12-AOP815
[28] I. Nourdin, G. Peccati and G. Reinert, Invariance principles for homogeneous sums: universality of Gaussian Wiener Chaos. Ann. Probab.38 (2010) 1947-1985. · Zbl 1246.60039 · doi:10.1214/10-AOP531
[29] I. Nourdin, G. Peccati and A. Reveillac, Multivariate normal approximation using Stein’s method and Malliavin calculus. Ann. Inst. Henri Poincaré, Probab. Stat.46 (2010) 45-58. · Zbl 1196.60035 · doi:10.1214/08-AIHP308
[30] I. Nourdin, G. Peccati and R. Speicher, Multidimensional semicircular limits on the free Wigner Chaos. Ascona Proceedings 2011. In vol. 67 of Progress in Probability (2013) 211-221. · Zbl 1295.46046
[31] I. Nourdin, G. Peccati and Y. Swan, Entropy and the fourth moment phenomenon. J. Funct. Anal.266 (2014) 3170-3207. · Zbl 1292.94010 · doi:10.1016/j.jfa.2013.09.017
[32] I. Nourdin, G. Peccati, G. Poly and R. Simone, Classical and free fourth moment theorems: universality and thresholds. J. Theoret. Probab.29 (2016) 653-680. · Zbl 1356.60037 · doi:10.1007/s10959-014-0590-8
[33] D. Nualart and G. Peccati, Central limit theorems for sequences of multiple stochastic integrals. Ann. Probab.33 (2005) 177-193. · Zbl 1097.60007 · doi:10.1214/009117904000000621
[34] G. Peccati, Quantitative CLTs on a Gaussian space: a survey of recent developments. ESAIM: Proc. Suv.44 (2014) 61-78. · Zbl 1327.60062 · doi:10.1051/proc/201444003
[35] G. Peccati and M.S. Taqqu, Wiener Chaos: Moments, Cumulants and Diagrams. Springer-Verlag (2010). · Zbl 1231.60003
[36] G. Peccati and Ch. Thaele, Gamma limits and U-statistics on the Poisson space. ALEA, Lat. Am. J. Probab. Math. Stat.10 (2013) 525-560. · Zbl 1277.60052
[37] G. Peccati and C. Tudor, Gaussian limits for vector-valued multiple stochastic integrals. In vol. XXXVIII, Séminaire de Probabilités (2005) 247-262. · Zbl 1063.60027
[38] G. Peccati and C. Zheng, Universal Gaussian fluctuations on the discrete Poisson chaos. Bernoulli20 (2013) 697-715. · Zbl 1302.60059 · doi:10.3150/12-BEJ503
[39] G. Peccati, J.L. Solé, M.S. Taqqu and F. Utzet, Stein’s method and normal approximation of Poisson functionals. Ann. Probab.38 (2010) 443-478. · Zbl 1195.60037 · doi:10.1214/09-AOP477
[40] R. Simone, Universality for free homogeneous sums in every dimension. ALEA, Lat. Am. J. Probab. Math. Stat.12 (2015) 213-244. · Zbl 1327.46064
[41] D. Voiculescu, Symmetries of some reduced free product C^{-algebras. Operator algebras and their connection with topology and ergodic theory. Vol. 1132 of Lect. Notes Math. Springer (1985) 556-588.}
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.