×

Poisson approximations on the free Wigner chaos. (English) Zbl 1281.46057

Summary: We prove that an adequately rescaled sequence \(\{F_{n}\}\) of self-adjoint operators, living inside a fixed free Wigner chaos of even order, converges in distribution to a centered free Poisson random variable with rate \(\lambda>0\) if and only if \(\varphi(F_{n}^{4})-2\varphi(F_{n}^{3})\rightarrow2\lambda^{2}-\lambda\) (where \(\varphi\) is the relevant tracial state). This extends to a free setting some recent limit theorems by I. Nourdin and G. Peccati [Ann. Probab. 37, No. 4, 1412–1426 (2009; Zbl 1171.60323)] and provides a noncentral counterpart to a result by T. Kemp et al. [ibid. 40, No. 4, 1577–1635 (2012; Zbl 1277.46033)]. As a by-product of our findings, we show that Wigner chaoses of order strictly greater than 2 do not contain nonzero free Poisson random variables. Our techniques involve the so-called “Riordan numbers,” counting noncrossing partitions without singletons.

MSC:

46L54 Free probability and free operator algebras
60H05 Stochastic integrals
60H07 Stochastic calculus of variations and the Malliavin calculus
60H30 Applications of stochastic analysis (to PDEs, etc.)

References:

[1] Bai, Z. and Silverstein, J. W. (2010). Spectral Analysis of Large Dimensional Random Matrices , 2nd ed. Springer, New York. · Zbl 1301.60002
[2] Bernhart, F. R. (1999). Catalan, Motzkin, and Riordan numbers. Discrete Math. 204 73-112. · Zbl 0933.05002 · doi:10.1016/S0012-365X(99)00054-0
[3] Biane, P. and Speicher, R. (1998). Stochastic calculus with respect to free Brownian motion and analysis on Wigner space. Probab. Theory Related Fields 112 373-409. · Zbl 0919.60056 · doi:10.1007/s004400050194
[4] Deya, A., Noreddine, S. and Nourdin, I. (2013). Fourth moment theorem and \(q\)-Brownian chaos. Comm. Math. Phys. · Zbl 1278.46054
[5] Deya, A. and Nourdin, I. (2012). Convergence of Wigner integrals to the tetilla law. ALEA Lat. Am. J. Probab. Math. Stat. 9 101-127. · Zbl 1285.46053
[6] Hiai, F. and Petz, D. (2000). The Semicircle Law , Free Random Variables and Entropy. Mathematical Surveys and Monographs 77 . Amer. Math. Soc., Providence, RI. · Zbl 0955.46037
[7] Kemp, T., Nourdin, I., Peccati, G. and Speicher, R. (2012). Wigner chaos and the fourth moment. Ann. Probab. 40 1577-1635. · Zbl 1277.46033 · doi:10.1214/11-AOP657
[8] Nica, A. and Speicher, R. (2006). Lectures on the Combinatorics of Free Probability. London Mathematical Society Lecture Note Series 335 . Cambridge Univ. Press, Cambridge. · Zbl 1133.60003 · doi:10.1017/CBO9780511735127
[9] Nourdin, I. (2012). A webpage on Stein’s method, Malliavin calculus and related topics. Available at .
[10] Nourdin, I. (2011). Yet another proof of the Nualart-Peccati criterion. Electron. Commun. Probab. 16 467-481. · Zbl 1253.60068 · doi:10.1214/ECP.v16-1642
[11] Nourdin, I. and Peccati, G. (2009). Noncentral convergence of multiple integrals. Ann. Probab. 37 1412-1426. · Zbl 1171.60323 · doi:10.1214/08-AOP435
[12] Nourdin, I. and Peccati, G. (2009). Stein’s method on Wiener chaos. Probab. Theory Related Fields 145 75-118. · Zbl 1175.60053 · doi:10.1007/s00440-008-0162-x
[13] Nourdin, I. and Peccati, G. (2010). Stein’s method meets Malliavin calculus: A short survey with new estimates. In Recent Development in Stochastic Dynamics and Stochastic Analysis. Interdiscip. Math. Sci. 8 207-236. World Sci. Publ., Hackensack, NJ. · Zbl 1203.60065 · doi:10.1142/9789814277266_0014
[14] Nourdin, I. and Peccati, G. (2012). Normal Approximations with Malliavin Calculus : From Stein’s Method to Universality. Cambridge Tracts in Mathematics 192 . Cambridge Univ. Press, Cambridge. · Zbl 1266.60001
[15] Nualart, D. and Peccati, G. (2005). Central limit theorems for sequences of multiple stochastic integrals. Ann. Probab. 33 177-193. · Zbl 1097.60007 · doi:10.1214/009117904000000621
[16] Peccati, G. and Taqqu, M. S. (2011). Wiener Chaos : Moments , Cumulants and Diagrams : A Survey With Computer Implementation. Bocconi & Springer Series 1 . Springer, Milan. · Zbl 1231.60003 · doi:10.1007/978-88-470-1679-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.