×

Analysis of an adaptive finite element method for recovering the Robin coefficient. (English) Zbl 1355.65148

Summary: Based on a new a posteriori error estimator, an adaptive finite element method is proposed for recovering the Robin coefficient involved in a diffusion system from some boundary measurement. The a posteriori error estimator cannot be derived for this ill-posed nonlinear inverse problem as was done for the existing a posteriori error estimators for direct problems. Instead, we shall derive the a posteriori error estimator from our convergence analysis of the adaptive algorithm. We prove that the adaptive algorithm guarantees a convergent subsequence of discrete solutions in an energy norm to some exact triplet (the Robin coefficient, state and costate variables) determined by the optimality system of the least-squares formulation with Tikhonov regularization for the concerned inverse problem. Some numerical results are also reported to illustrate the performance of the algorithm.

MSC:

65N21 Numerical methods for inverse problems for boundary value problems involving PDEs
35R30 Inverse problems for PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
35J60 Nonlinear elliptic equations
35R25 Ill-posed problems for PDEs
65N20 Numerical methods for ill-posed problems for boundary value problems involving PDEs
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
Full Text: DOI

References:

[1] M. Ainsworth and J. T. Oden, {\it A Posteriori Error Estimation in Finite Element Analysis}, Pure Appl. Math., Wiley-Interscience, New York, 2000. · Zbl 1008.65076
[2] W. Bangerth and A. Joshi, {\it Adaptive finite element methods for the solution of inverse problems in optical tomography}, Inverse Problems, 24 (2008), pp. 1-22. · Zbl 1142.65087
[3] R. Becker, H. Kapp, and R. Rannacher, {\it Adaptive finite element methods for optimal control of partial differential equations: Basic concept}, SIAM J. Control Optim., 39 (2000), pp. 113-132. · Zbl 0967.65080
[4] R. Becker and B. Vexler, {\it A posteriori error estimation for finite element discretization of parameter identification problems}, Numer. Math., 96 (2004), pp. 435-459. · Zbl 1044.65080
[5] L. Beilina and M. V. Klibanov, {\it A posteriori error estimates for the adaptivity technique for the Tikhonov functional and global convergence for a coefficient inverse problem}, Inverse Problems, 26 (2010), 045012. · Zbl 1193.65165
[6] L. Belenki, L. Diening, and C. Kreuzer, {\it Optimality of an adaptive finite element method for the p-Laplacian equation}, IMA J. Numer. Anal., 32 (2012), pp. 484-510. · Zbl 1245.65156
[7] P. Binev, W. Dahmen, and R. DeVore, {\it Adaptive finite element methods with convergence rates}, Numer. Math., 97 (2004), pp. 219-268. · Zbl 1063.65120
[8] S. Busenberg and W. Fang, {\it Identification of semiconductor contact resistivity}, Quart. J. Appl. Math., 49 (1991), pp. 639-649. · Zbl 0749.35062
[9] J. M. Cascon, C. Kreuzer, R. H. Nochetto, and K. G. Siebert, {\it Quasi-optimal convergence rate for an adaptive finite element method}, SIAM J. Numer. Anal., 46 (2008), pp. 2524-2550. · Zbl 1176.65122
[10] S. Chaabane, C. Elhechmi, and M. Jaoua, {\it A stable recovery method for the Robin inverse problem}, Math. Comput. Simul., 66 (2004), pp. 367-383. · Zbl 1054.65110
[11] S. Chaabane, I. Fellah, M. Jaoua, and J. Leblond, {\it Logarithmic stability estimates for a Robin coefficient in two-dimensional Laplace inverse problems}, Inverse Problems, 20 (2004), pp. 47-59. · Zbl 1055.35135
[12] S. Chaabane, J. Ferchichi, and K. Kunisch, {\it Differentiability properties of the \(L^1\)-tracking functional and application to the Robin inverse problem}, Inverse Problems, 20 (2004), pp. 1083-1097. · Zbl 1061.35163
[13] S. Chaabane and M. Jaoua, {\it Identification of Robin coefficients by the means of boundary measurements}, Inverse Problems, 15 (1999), pp. 1425-1438. · Zbl 0943.35100
[14] S. Chantasiriwan, {\it Inverse determination of steady-state heat transfer coefficient}, Int. Comm. Heat Mass Transfer, 27 (2000), pp. 1155-1164.
[15] P. G. Ciarlet, {\it Finite Element Methods for Elliptic Problems}, North-Holland, Amsterdam, 1978. · Zbl 0383.65058
[16] L. Diening and C. Kreuzer, {\it Linear convergence of an adaptive finite element method for the p-Laplacian equation}, SIAM J. Numer. Anal., 46 (2008), pp. 614-638. · Zbl 1168.65060
[17] L. E. Evans and R. F. Gariepy, {\it Measure Theory and Fine Properties of Functions}, CRC Press, Boca Raton, FL, 1992. · Zbl 0804.28001
[18] W. Fang and E. Cumberbatch, {\it Inverse problems for metal oxide semiconductor field-effect transistor contact resistivity}, SIAM J. Appl. Math., 52 (1992), pp. 699-709. · Zbl 0755.35148
[19] W. Fang and M. Lu, {\it A fast collocation method for an inverse boundary value problem}, Internat. J. Numer. Methods Engrg., 59 (2004), pp. 1563-1585. · Zbl 1059.65100
[20] D. Fasino and G. Inglese, {\it An inverse Robin problem for Laplace’s equation: Theoretical results and numerical methods}, Inverse Problems, 15 (1999), pp. 41-48. · Zbl 0922.35188
[21] T. Feng, N. Yan, and W. Liu, {\it Adaptive finite element methods for the identification of distributed parameters in elliptic equation}, Adv. Comput. Math., 29 (2008), pp. 27-53. · Zbl 1148.65086
[22] E. M. Garau and P. Morin, {\it Convergence and quasi-optimality of adaptive FEM for Steklov eigenvalue problems}, IMA J. Numer. Anal., 31 (2011), pp. 914-946. · Zbl 1225.65107
[23] E. M. Garau, P. Morin, and C. Zuppa, {\it Convergence of adaptive finite element methods for eigenvalue problems}, Math. Models Methods Appl. Sci., 19 (2009), pp. 721-747. · Zbl 1184.65100
[24] E. M. Garau, P. Morin, and C. Zuppa, {\it Convergence of an adaptive Kačanov FEM for quasi-linear problems}, Appl. Numer. Math., 61 (2011), pp. 512-529. · Zbl 1211.65154
[25] E. M. Garau, P. Morin, and C. Zuppa, {\it Quasi-optimal convergence rate of an AFEM for quasi-linear problems of monotone type}, Numer. Math. Theory Methods Appl., 5 (2012), pp. 131-156. · Zbl 1265.65223
[26] A. Gaevskaya, R. Hoppe, Y. Iliash, and M. Kieweg, {\it Convergence analysis of an adaptive finite element method for distributed control problems with control constraints}, in Proceedings of the Conference on Optimal Control for PDEs, G. Leugering et al., eds., Oberwolfach, Germany, Birkhäuser, Basel, 2007. · Zbl 1239.49041
[27] M. Hintermüller and R. Hoppe, {\it Goal-oriented adaptivity in pointwise state constrained optimal control of partial differential equations}, SIAM J. Control Optim., 48 (2010), pp. 5468-5487. · Zbl 1208.49025
[28] M. Hintermüller, R. Hoppe, Y. Iliash, and M. Kieweg, {\it An a posteriori error analysis of adaptive finite element methods for distributed elliptic control problems with control constraints}, ESAIM Control Optim. Calc. Var., 14 (2008), pp. 540-560. · Zbl 1157.65039
[29] G. Inglese, {\it An inverse problem in corrosion detection}, Inverse Problems, 13 (1997), pp. 977-994. · Zbl 0882.35133
[30] B. Jin and J. Zou, {\it Numerical estimation of piecewise constant Robin coefficient}, SIAM J. Control. Optim., 48 (2009), pp. 1977-2002. · Zbl 1197.65178
[31] B. Jin and J. Zou, {\it Numerical estimation of the Robin coefficient in a stationary diffusion equation}, IMA J. Numer. Anal., 30 (2010), pp. 677-701. · Zbl 1203.65232
[32] P. G. Kaup and F. Santosa, {\it Nondestructive evaluation of corrosion damage using electrostatic measurements}, J. Nondestr. Eval., 14 (1995), pp. 127-136.
[33] J. Li, J. Xie, and J. Zou, {\it An adaptive finite element reconstruction of distributed fluxes}, Inverse Problems, 27 (2011), 075009 (25pp). · Zbl 1219.65134
[34] R. Li, W. Liu, H. Ma, and T. Tang, {\it Adaptive finite element approximation for distributed elliptic optimal control problems}, SIAM J. Control Optim., 41 (2002), pp. 1321-1349. · Zbl 1034.49031
[35] F. Lin and W. Fang, {\it A linear integral equation approach to the Robin inverse problem}, Inverse Problems, 21 (2005), pp. 1757-1772. · Zbl 1086.35142
[36] W. Liu and N. Yan, {\it A posteriori error estimates for distributed convex optimal control problems}, Adv. Comput. Math., 15 (2001), pp. 285-309. · Zbl 1008.49024
[37] T. J. Martin and G. S. Dulikravich, {\it Inverse determination of steady heat convection coefficient distribution}, J. Heat Transfer, 120 (1998), pp. 328-334.
[38] P. Morin, K. G. Siebert, and A. Veeser, {\it A basic convergence result for conforming adaptive finite elements}, Math. Models Methods Appl. Sci., 18 (2008), pp. 707-737. · Zbl 1153.65111
[39] R. H. Nochetto, K. G. Siebert, and A. Veeser, {\it Theory of adaptive finite element methods: An introduction}, in Multiscale, Nonlinear and Adaptive Approximation, R. A. DeVore and A. Kunoth, eds., Springer, New York, 2009, pp. 409-542. · Zbl 1190.65176
[40] L. R. Scott and S. Zhang, {\it Finite element interpolation of nonsmooth functions satisfying boundary conditions}, Math. Comp., 54 (1990), pp. 483-493. · Zbl 0696.65007
[41] K. G. Siebert, {\it A convergence proof for adaptive finite elements without lower bounds}, IMA J. Numer. Anal., 31 (2011), pp. 947-970. · Zbl 1225.65101
[42] R. Stevenson, {\it Optimality of a standard adaptive finite element method}, Found. Comput. Math., 7 (2007), pp. 245-269. · Zbl 1136.65109
[43] R. Stevenson, {\it The completion of locally refined simplicial partitions created by bisection}, Math. Comp., 77 (2008), pp. 227-241. · Zbl 1131.65095
[44] C. Traxler, {\it An algorithm for adaptive mesh refinement in \(n\) dimensions}, Computing, 59 (1997), pp. 115-137. · Zbl 0944.65123
[45] R. Verfürth, {\it A Review of A Posteriori Estimation and Adaptive Mesh-Refinement Techniques}, Wiley, New York, 1996. · Zbl 0853.65108
[46] F. M. White, {\it Heat and Mass Transfer}, Addison-Wesley, Reading, MA, 1988.
[47] Y. Xu and J. Zou, {\it Convergence of an adaptive finite element method for distributed flux reconstruction}, Math. Comp., to appear; preprint available as arXiv:1309.2101. · Zbl 1321.65163
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.