×

Adaptive finite element methods for the identification of distributed parameters in elliptic equation. (English) Zbl 1148.65086

The authors consider the problem of determining the unknown functional coefficient \(q\) in the elliptic equation
\[ -\nabla(q(x) \nabla u)=f, \quad x \in \Omega; \quad u=0, \quad x \in \partial \Omega \]
by the observation data \(u=z \in L_2(\Omega)\). The domain \(\Omega\) is a bounded open subset of \(\mathbb R^n\) \((n \geq 3)\) with \(\partial \Omega \in C^3\) or \(\Omega\) is a parallelepiped. The original inverse problem is reduced to the variational problem
\[ \min_{q \in K} \{ \| u(q)-z\|^2_{L_2(\Omega)}+ \beta \| \nabla q \|^2_{L_2(\Omega)} \}, \]
where \(K=\{ q\in W^{1,t}: 0<\alpha \leq q(x) \leq \nu, q|_{\partial \Omega}=q^* \}\), \(t>n\).

MSC:

65N21 Numerical methods for inverse problems for boundary value problems involving PDEs
35J25 Boundary value problems for second-order elliptic equations
35R30 Inverse problems for PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
Full Text: DOI

References:

[1] Ainsworth, M., Oden, J.T.: A Posteriori Error Estimation in Finite Element Analysis. Wiley, New York (2000) · Zbl 1008.65076
[2] Ascher, U., Haber, E.: Grid refinement and scaling for distributed parameter identification problems. Inverse Problems 17, pp. 571–590 (2001) · Zbl 0998.65115 · doi:10.1088/0266-5611/17/3/314
[3] Bangerth, W.: Adaptive finite elment methods for the identification of distributed parameters in the partial differential equations. PhD thesis, University of Heidelberg, Institut für Angewandte Mathematik (2002) · Zbl 1006.65105
[4] Bank, H.T., Kunisch, K.: Estimation Techniques for Distributed Parameter System. Birkhaäuser, Boston (1989)
[5] Chan, T.F., Tai, X.C.: Level set and total variation regularization for elliptic inverse problems with discontinuous coefficients. J. Comput. Phys. 193, 40–66 (2003) · Zbl 1036.65086 · doi:10.1016/j.jcp.2003.08.003
[6] Chan, T.F., Tai, X.C.: Identification of discontinuous coefficients from elliptic problems using total variation regularization. SIAM J. Sci. Comput. 25(3), 881–904 (2003) · Zbl 1046.65090 · doi:10.1137/S1064827599326020
[7] Chen, Z., Nochetto, R.H.: Residual type a posteriori error estimates for elliptic obstacle problems. Numer. Math. 84, 527–548 (2000) · Zbl 0943.65075 · doi:10.1007/s002110050009
[8] Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978) · Zbl 0383.65058
[9] Dobson, D.C., Santosa, F.: An image enhancement techneque for electrical impedance tomography. Inverse Problems 10, 317–334 (1994) · Zbl 0805.35149 · doi:10.1088/0266-5611/10/2/008
[10] Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems. Kluwer, Dordrecht (1996) · Zbl 0859.65054
[11] Eriksson, K., Johnson, C.: Adaptive finite element methods for parabolic Problems I: A linear model problem. SIAM J. Numer. Anal. 28, 43–77 (1991) · Zbl 0732.65093 · doi:10.1137/0728003
[12] Ewing, R. (ed.) The Mathematics of Reservior Simulation. Frontiers Appl. Math. 1, SIAM, Philadelphia (1984)
[13] Ewing, R.E., Lin, T., Falk, R.S.: Inverse and ill-posed problems in reservoir simulation. In: Inverse and Ill-Posed Problem, pp. 483–497. Academic, Boston, MA (1987) · Zbl 0667.35066
[14] Ewing, R.E., Lin, T.: Parameter identification problems in single-phase and two-phase flow. In: Proc. 4th Int. Conf. on Control of Distributed Parameter Systems, International Series for Numerical Mathematics 91, pp. 85–108. Birkhauser Verlag, Basel (1989) · Zbl 0686.93016
[15] Falk, R.S.: Approximation of a class of optimal control problems with order of convergence estimates. J. Math. Anal. Appl. 44, 28–47 (1973) · Zbl 0268.49036 · doi:10.1016/0022-247X(73)90022-X
[16] Falk, R.S.: Error estimates of the numerical identification of a variable coefficient. Math. Comp. 40, 537–546 (1983) · Zbl 0551.65083 · doi:10.1090/S0025-5718-1983-0689469-3
[17] Feng, T., Gulliksson, M., Liu, W.B.: Adaptive finite element methods for identification of elastic constants. J. Sci. Comput. 26, 217–235 (2006) · Zbl 1203.74136 · doi:10.1007/s10915-004-4935-9
[18] Fletcher, R.: Practical Methods of Optimization. Wiley, New York (2000) · Zbl 0905.65002
[19] French, D.A., King, J.T.: Approximation of an elliptic control problem by the finite element method. Numer. Funct. Anal. Optim. 12, 299–314 (1991) · doi:10.1080/01630569108816430
[20] Geveci, T.: On the approximation of the solution of an optimal control problem governed by an elliptic equation. RAIRO. Anal. Numer. 13, 313–328 (1979) · Zbl 0426.65067
[21] Gunzburger, M.D., Hou, S.L.: Finite dimensional approximation of a class of constrained nonlinear control problems. SIAM J. Control Optim. 34, 1001–1043 (1996) · Zbl 0849.49005 · doi:10.1137/S0363012994262361
[22] Haber, E., Ascher, U.M., Oldenburg, D.: On optimization techniques for solving nonlinear inverse problems. Inverse Problems 16, 1263–1280 (2000) · Zbl 0974.49021 · doi:10.1088/0266-5611/16/5/309
[23] Hettlich, F., Rundell, W.: The determination of a discontinuity in a conductivity from a single boundary measurement. Inverse Problems 14(1), 67–82 (1998) · Zbl 0894.35126 · doi:10.1088/0266-5611/14/1/008
[24] Hintermüller, M., Ito, K., Kunisch, K.: The primal-dual active set strategy as a semi-smooth Newton method. SIAM J. Optim. 13, 865–888 (2002) · Zbl 1080.90074 · doi:10.1137/S1052623401383558
[25] Huang, Y.Q., Li, R., Liu, W.B., Yan, N.N.: Efficient discretization for finite element approximation of constrained optimal control problems. (submitted)
[26] Kärkkäinen, T.: Error estimates for distributed parameter identification problems. PhD thesis, University of Jyväskylä, Department of Mathematics (1995) · Zbl 0826.35136
[27] Knowles, G.: Finite dimensional approximation of parabolic time optimal control problems. SIAM J. Control Optim. 20, 414–427 (1982) · Zbl 0481.49026 · doi:10.1137/0320032
[28] Kufner, A., John, O., Fucik, S.: Function Spaces. Nordhoff, Leyden, The Netherlands (1977)
[29] Kunisch, K., Liu, W.B., Yan, N.N.: A posteriori error estimates for a model parameter identification problem. In: EUNMA’01 Proceedings, pp. 723–730 (2002) · Zbl 1043.65119
[30] Ladyzhenskaya, O.A., Urlatseva, H.H.: Linear and Qusilinear Elliptic Equations. Academic, New York (1968)
[31] Li, R., Lin, W.B., Ma, H.P., Tang, T.: Adaptive finite element approximation for distributed elliptic optimal control problems. SIAM J. Control Optim. 41, 1321–1349 (2002) · Zbl 1034.49031 · doi:10.1137/S0363012901389342
[32] Li, R.: On multi-mesh h-adaptive algorithm. J. Sci. Comput. 24(3), 321–341 (2005) · Zbl 1080.65111 · doi:10.1007/s10915-004-4793-5
[33] Liu, W.B., Yan, N.N.: A posteriori error estimators for a class of variational inequalities. J. Sci. Comput. 35, 361–393 (2000) · Zbl 0987.65060 · doi:10.1023/A:1011130501691
[34] Liu, W.B., Ma, H.P., Tang, T.: On mixed error estimates for elliptic obstacle problems. Adv. Comput. Math. 15, 261–283 (2001) · Zbl 0996.65113 · doi:10.1023/A:1014261013164
[35] Lowe, B.D., Rundell, W.: Unique recovery of a coefficient in an elliptic equation from input sources. Inverse Problems 11(1), 211–215 (1995) · Zbl 0824.35139 · doi:10.1088/0266-5611/11/1/012
[36] Scott, L.R., Zhang, S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comp. 54, 483–493 (1990) · Zbl 0696.65007 · doi:10.1090/S0025-5718-1990-1011446-7
[37] Sun, N.Z.: Inverse Problem in Groundwater Modeling. Kluwer, The Netherlands (1994)
[38] Ulbrich, M.: Nonsmooth Newton-like methods for variational inequalities and constrained optimization problems in function spaces. Habilitation thesis, Fakultät für Mathematik, Technische Universität München (2002)
[39] Verfürth, R.: A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley, New York (1995) · Zbl 0874.65082
[40] Yeh, W.W.-G.: Review of parameter identification procedures in groundwater hydrology: the inverse problems. Water Resour. Rev. 22, 95–108 (1986) · doi:10.1029/WR022i002p00095
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.