×

Flow polynomials as Feynman amplitudes and their \(\alpha\)-representation. (English) Zbl 1355.05136

Summary: Let \(G\) be a connected graph; denote by \(\tau(G)\) the set of its spanning trees. Let \(\mathbb F_q\) be a finite field, \(s(\alpha,G)=\sum_{T\in\tau(G)}~ \prod_{e \in E(T)} \alpha_e\), where \(\alpha_e\in \mathbb F_q\). M. Kontsevich [Math. Phys. Stud. 20, 139–156 (1997; Zbl 1149.53325)] conjectured that the number of nonzero values of \(s(\alpha, G)\) is a polynomial in \(q\) for all graphs. This conjecture was disproved by P. Brosnan and P. Belkale [Duke Math. J. 116, No. 1, 147–188 (2003; Zbl 1076.14026)]. In this paper, using the standard technique of the Fourier transformation of Feynman amplitudes, we express the flow polynomial \(F_G(q)\) in terms of the “correct” Kontsevich formula. Our formula represents \(F_G(q)\) as a linear combination of Legendre symbols of \(s(\alpha, H)\) with coefficients \(\pm 1/q^{(|V(H)|-1)/2}\), where \(H\) is a contracted graph of \(G\) depending on \(\alpha\in \left(\mathbb F^*_q \right)^{E(G)}\), and \(|V(H)|\) is odd.

MSC:

05C31 Graph polynomials
05C40 Connectivity

References:

[1] Martin Aigner. Combinatorial theory. Springer Verlag, 1979.doi:10.1007/978-14615-6666-3 the electronic journal of combinatorics 24(1) (2017), #P1.1117 · Zbl 0415.05001
[2] Ravindra B. Bapat. Graphs and matrices, second edition. Universitext, Springer, London, 2014.doi:10.1007/978-1-4471-6569-9 · Zbl 1301.05001
[3] Prakash Belkale and Patrick Brosnan. Matroids, motives, and a conjecture of Kontsevich. Duke Math. J., 116(1):147-188, 2003.doi:10.1215/s0012-7094-03-11615-4 · Zbl 1076.14026
[4] M. B´ır´o, M. Hujter and Zs. Tuza. Precoloring extension. I. Interval graphs. Discrete Math., 100:267-279, 1992.doi:10.1016/0012-365x(92)90646-w · Zbl 0766.05026
[5] Pavel M. Bleher. Analytic continuation of dual Feynman amplitudes. Random fields, vol. I, II (Esztergom, 1979), 145-170, Colloq. Math. Soc. J´anos Bolyai, 27, NorthHolland, Amsterdam.MR0712673 · Zbl 0762.11031
[6] Francis Brown and Oliver Schnetz. A K3in φ4. Duke Math. J., 161(10):1817-1862, 2012.doi:10.1215/00127094-1644201 · Zbl 1253.14024
[7] S. Chaiken. A combinatorial proof of the all minors matrix tree theorem. SIAM J. Algebraic Discrete Methods, 3(3):319-329, 1982.doi:10.1137/0603033 · Zbl 0495.05018
[8] W. K. Chen. Applied graph theory, Graphs and Electrical Networks, second revised edition. North-Holland, Amsterdam, 1976.doi:10.1007/pl00001273 · Zbl 0325.05102
[9] F. Chung and C. Yang. On polynomials of spanning trees. Ann. Comb. 4(1):13-25, 2000.doi:10.1007/pl00001273 · Zbl 0947.05050
[10] Reinhard Diestel. Graph theory, fourth edition. Graduate Texts in Mathematics, 173, Springer, Heidelberg, 2010.doi:10.1007/978-3-642-14279-6 · Zbl 1204.05001
[11] Kenneth Ireland and Michael Ira Rosen. A classical introduction to modern number theory, second edition. Graduate Texts in Mathematics, 84, Springer, New York, 1990.doi:10.1007/978-1-4757-2103-4 · Zbl 0712.11001
[12] A. K. Kelmans. On properties of the characteristic polynomial of a graph. Cybernetics Serves Communism [in Russian], vol. 4, 27-41, Energiya, Moscow-Leningrad, 1967.
[13] E. Yu. Lerner. Feynman integrals of p-adic argument in the momentum space. II. Explicit expressions. Teoret. Mat. Fiz., 104(3):371-392, 1995; translation in Theoret. and Math. Phys., 104(3):1061-1077, 1996.doi:10.1007/bf02068739 · Zbl 0923.46075
[14] E. Yu. Lerner. The α-representation for the characteristic function of a matroid, [arXiv:1611.02746], 2016.
[15] L´aszl´o Mikl´os Lov´asz, Carsten Thomassen, Yezhou Wu, and Cun-Quan Zhang. Nowhere-zero 3-flows and modulo k-orientations.J. Combin. Theory Ser. B, 103(5):587-598, 2013.doi:10.1016/j.jctb.2013.06.003 · Zbl 1301.05154
[16] L´aszl´o Lov´asz. Tutte’s flow conjectures. Tom Lovering’s Blog, 2012.https://tlovering. files.wordpress.com/2012/06/laszloessay.pdf
[17] Rudolf Lidl and Harald Niederreiter. Finite fields, second edition. Encyclopedia of Mathematics and its Applications, 20, Cambridge Univ. Press, Cambridge, 1997. doi:10.1017/CBO9780511525926.001 · Zbl 0864.11063
[18] V. A. Malyshev and R. A. Minlos. Gibbs random fields. Mathematics and its Applications (Soviet Series), 44, Kluwer Acad. Publ., Dordrecht, 1991.doi:10.1007/ 978-94-011-3708-9 the electronic journal of combinatorics 24(1) (2017), #P1.1118 · Zbl 0731.60099
[19] Oliver Schnetz. Quantum field theory over Fq. Electron. J. Combin., 18(1), 2011, #P102.http://www.combinatorics.org/ojs/index.php/eljc/article/view/v18i1p102 · Zbl 1217.05110
[20] V. A. Smirnov. Renormalization and asymptotic expansions. Progress in Physics, 14, Birkh¨auser, Basel, 1991.MR1118153 · Zbl 0744.46072
[21] R. P. Stanley. Spanning trees and a conjecture of Kontsevich. Ann. Comb., 2(4):351– 363, 1998.doi:10.1007/bf01608530 · Zbl 0927.05087
[22] Richard P. Stanley. Enumerative combinatorics. Vol. 2. Cambridge Studies in Advanced Mathematics, 62, Cambridge Univ. Press, Cambridge, 1999.doi:10.1007/ 978-1-4615-9763-6 · Zbl 0928.05001
[23] John R. Stembridge. Counting points on varieties over finite fields related to a conjecture of Kontsevich. Ann. Combin., 2(4):365-385, 1998.doi:10.1007/bf01608531 · Zbl 0927.05002
[24] Carsten Thomassen. The weak 3-flow conjecture and the weak circular flow conjecture. J. Combin. Theory Ser. B, 102(2):521-529, 2012.doi:10.1016/j.jctb.2011.09.003 · Zbl 1239.05083
[25] W. T. Tutte. Graph theory, reprint of the 1984 original. Encyclopedia of Mathematics and its Applications, 21, Cambridge Univ. Press, Cambridge, 2001.MR1813436
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.