×

Symmetry exploiting control of hybrid mechanical systems. (English) Zbl 1353.37172

Summary: Symmetry properties such as invariances of mechanical systems can be beneficially exploited in solution methods for control problems. A recently developed approach is based on quantization by so called motion primitives. A library of these motion primitives forms an artificial hybrid system. In this contribution, we study the symmetry properties of motion primitive libraries of mechanical systems in the context of hybrid symmetries. Furthermore, the classical concept of symmetry in mechanics is extended to hybrid mechanical systems and an extended motion planning approach is presented.

MSC:

37N35 Dynamical systems in control
37C80 Symmetries, equivariant dynamical systems (MSC2010)
93C30 Control/observation systems governed by functional relations other than differential equations (such as hybrid and switching systems)
70Q05 Control of mechanical systems
Full Text: DOI

References:

[1] R. Abraham, <em>Foundations of Mechanics</em>,, Addison-Wesley (1987)
[2] A. M. Bloch, Controlled Lagrangians and the stabilization of mechanical systems. I. The first matching theorem,, IEEE Transactions on Automatic Control, 45, 2253 (2000) · Zbl 1056.93604 · doi:10.1109/9.895562
[3] F. Bullo, <em>Geometric Control of Mechanical Systems</em>, vol. 49 of Texts in Applied Mathematics,, Springer (2005) · Zbl 1066.70002 · doi:10.1007/978-1-4899-7276-7
[4] M. Buss, Nonlinear hybrid dynamical systems: Modeling, optimal control, and applications,, in Modelling, 311 (2002) · doi:10.1007/3-540-45426-8_18
[5] H. Choset, <em>Principles of Robot Motion: Theory, Algorithms, and Implementations</em>,, MIT Press (2005) · Zbl 1081.68700
[6] K. Flaßkamp, Solving optimal control problems by exploiting inherent dynamical systems structures,, Journal of Nonlinear Science, 22, 599 (2012) · Zbl 1264.37013 · doi:10.1007/s00332-012-9140-7
[7] K. Flaßkamp, <em>On the Optimal Control of Mechanical Systems - Hybrid Control Strategies and Hybrid Dynamics</em>,, PhD thesis (2013)
[8] E. Frazzoli, <em>Robust Hybrid Control for Autonomous Vehicle Motion Planning</em>,, PhD thesis (2001)
[9] E. Frazzoli, On quantization and optimal control of dynamical systems with symmetries,, in Proceedings of the 41st IEEE Conference on Decision and Control, 1, 817 (2002) · doi:10.1109/CDC.2002.1184606
[10] E. Frazzoli, Robust hybrid control for autonomous vehicle motion planning,, in Proceedings of the 39th IEEE Conference on Decision and Control, 1, 821 (2000) · doi:10.1109/CDC.2000.912871
[11] E. Frazzoli, Maneuver-based motion planning for nonlinear systems with symmetries,, IEEE Transactions on Robotics, 21, 1077 (2005)
[12] M. Golubitsky, <em>The Symmetry Perspective. From Equilibrium to Chaos in Phase Space and Physical Space</em>,, vol. 200 of Progress in Mathematics (2002) · Zbl 1031.37001 · doi:10.1007/978-3-0348-8167-8
[13] S. Hage-Packhäuser, <em>Structural Treatment of Time-Varying Dynamical System Networks in the Light of Hybrid Symmetries</em>,, PhD thesis (2012)
[14] M. Kobilarov, <em>Discrete Geometric Motion Control of Autonomous Vehicles</em>,, PhD thesis (2008)
[15] J. Lygeros, Dynamical Properties of Hybrid Automata,, IEEE Transactions on Automatic Control, 48, 2 (2003) · Zbl 1364.93503 · doi:10.1109/TAC.2002.806650
[16] J. E. Marsden, <em>Lectures on Mechanics</em>,, no. 174 in London Mathematical Society Lecture Note Series (1992) · Zbl 0744.70004 · doi:10.1017/CBO9780511624001
[17] J. E. Marsden, Multisymplectic geometry, variational integrators, and nonlinear PDEs,, Communications in Mathematical Physics, 199, 351 (1998) · Zbl 0951.70002 · doi:10.1007/s002200050505
[18] J. E. Marsden, <em>Introduction to Mechanics and Symmetry</em>, vol. 17 of Texts in Applied Mathematics,, 2nd edition (1999) · Zbl 0933.70003 · doi:10.1007/978-0-387-21792-5
[19] J. E. Marsden, Reduction theory and the Lagrange-Routh equations,, Journal of Mathematical Physics, 41, 3379 (2000) · Zbl 1044.37043 · doi:10.1063/1.533317
[20] J. E. Marsden, Lagrangian reduction and the double spherical pendulum,, Zeitschrift für angewandte Mathematik und Physik (ZAMP), 44, 17 (1993) · Zbl 0778.70016 · doi:10.1007/BF00914351
[21] J. E. Marsden, Discrete mechanics and variational integrators,, Acta Numerica, 10, 357 (2001) · Zbl 1123.37327 · doi:10.1017/S096249290100006X
[22] S. Ober-Blöbaum, Discrete mechanics and optimal control: an analysis,, Control, 17, 322 (2011) · Zbl 1357.49120 · doi:10.1051/cocv/2010012
[23] A. J. v. d. Schaft, <em>An Introduction to Hybrid Dynamical Systems</em>, vol. 251 of Lecture Notes in Control and Information Sciences,, Springer (2000) · Zbl 0940.93004
[24] S. N. Simić, Towards a Geometric Theory of Hybrid Systems,, Dynamics of Continuous, 12, 649 (2005) · Zbl 1090.37013
[25] J. C. Simo, Stability of relative equilibria. Part I: The reduced energy-momentum method,, Archive for Rational Mechanics and Analysis, 115, 15 (1991) · Zbl 0738.70010 · doi:10.1007/BF01881678
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.