×

Non-trivial solutions for nonlocal elliptic problems of Kirchhoff-type. (English) Zbl 1352.34025

The authors are concerned with the Kirchoff-type equation \[ K\left(\int_a^b\mid u'(x)\mid^2dx\right)u''=\lambda f(x,u),\quad x\in(a,b) \] with homogeneous Dirichlet boundary conditions. \(\lambda\) is a positive real parameter, \(K: [0,+\infty)\to\mathbb{R}\) is continuous and lower bounded while the nonlinearity \(f\) is \(L^1\)-Carathéodory. Using variational techniques, the authors prove the existence of a weak solution in the Sobolev space \(W_0^{1,2}\) for some values of the parameter \(\lambda\).

MSC:

34B10 Nonlocal and multipoint boundary value problems for ordinary differential equations
34B15 Nonlinear boundary value problems for ordinary differential equations
47J10 Nonlinear spectral theory, nonlinear eigenvalue problems
58E50 Applications of variational problems in infinite-dimensional spaces to the sciences
Full Text: DOI

References:

[1] Afrouzi G. A., Hadjian A. and Heidarkhani S., Non-trivial solutions for a two-point boundary value problem, Ann. Polon. Math. 108 (2013), no. 1, 75-84.; Afrouzi, G. A.; Hadjian, A.; Heidarkhani, S., Non-trivial solutions for a two-point boundary value problem, Ann. Polon. Math., 108, 1, 75-84 (2013) · Zbl 1275.34035
[2] Alves C. O., Corrêa F. S. J. A. and Ma T. F., Positive solutions for a quasilinear elliptic equation of Kirchhoff type, Comput. Math. Appl. 49 (2005), no. 1, 85-93.; Alves, C. O.; Corrêa, F. S. J. A.; Ma, T. F., Positive solutions for a quasilinear elliptic equation of Kirchhoff type, Comput. Math. Appl., 49, 1, 85-93 (2005) · Zbl 1130.35045
[3] Bonanno G., A critical point theorem via the Ekeland variational principle, Nonlinear Anal. 75 (2012), no. 5, 2992-3007.; Bonanno, G., A critical point theorem via the Ekeland variational principle, Nonlinear Anal., 75, 5, 2992-3007 (2012) · Zbl 1239.58011
[4] Bonanno G., Di Bella B. and O’Regan D., Non-trivial solutions for nonlinear fourth-order elastic beam equations, Comput. Math. Appl. 62 (2011), no. 4, 1862-1869.; Bonanno, G.; Di Bella, B.; O’Regan, D., Non-trivial solutions for nonlinear fourth-order elastic beam equations, Comput. Math. Appl., 62, 4, 1862-1869 (2011) · Zbl 1231.74259
[5] Bonanno G., Heidarkhani S. and O’Regan D., Nontrivial solutions for Sturm-Liouville systems via a local minimum theorem for functionals, Bull. Aust. Math. Soc. 89 (2014), no. 1, 8-18.; Bonanno, G.; Heidarkhani, S.; O’Regan, D., Nontrivial solutions for Sturm-Liouville systems via a local minimum theorem for functionals, Bull. Aust. Math. Soc., 89, 1, 8-18 (2014) · Zbl 1292.34026
[6] Bonanno G., Molica Bisci G. and Rădulescu V. D., Nonlinear elliptic problems on Riemannian manifolds and applications to Emden-Fowler type equations, Manuscripta Math. 142 (2013), no. 1-2, 157-185.; Bonanno, G.; Molica Bisci, G.; Rădulescu, V. D., Nonlinear elliptic problems on Riemannian manifolds and applications to Emden-Fowler type equations, Manuscripta Math., 142, 1-2, 157-185 (2013) · Zbl 1273.58010
[7] Bonanno G., Molica Bisci G. and Rădulescu V. D., Weak solutions and energy estimates for a class of nonlinear elliptic Neumann problems, Adv. Nonlinear Stud. 13 (2013), no. 2, 373-389.; Bonanno, G.; Molica Bisci, G.; Rădulescu, V. D., Weak solutions and energy estimates for a class of nonlinear elliptic Neumann problems, Adv. Nonlinear Stud., 13, 2, 373-389 (2013) · Zbl 1276.35073
[8] Bonanno G. and Pizzimenti P. F., Neumann boundary value problems with not coercive potential, Mediterr. J. Math. 9 (2012), no. 4, 601-609.; Bonanno, G.; Pizzimenti, P. F., Neumann boundary value problems with not coercive potential, Mediterr. J. Math., 9, 4, 601-609 (2012) · Zbl 1260.34041
[9] Bonanno G. and Pizzimenti P. F., Existence results for nonlinear elliptic problems, Appl. Anal. 92 (2013), no. 2, 411-423.; Bonanno, G.; Pizzimenti, P. F., Existence results for nonlinear elliptic problems, Appl. Anal., 92, 2, 411-423 (2013) · Zbl 1270.35212
[10] Bonanno G. and Sciammetta A., An existence result of one nontrivial solution for two point boundary value problems, Bull. Aust. Math. Soc. 84 (2011), no. 2, 288-299.; Bonanno, G.; Sciammetta, A., An existence result of one nontrivial solution for two point boundary value problems, Bull. Aust. Math. Soc., 84, 2, 288-299 (2011) · Zbl 1238.34035
[11] Bonanno G. and Sciammetta A., Existence and multiplicity results to Neumann problems for elliptic equations involving the p-Laplacian, J. Math. Anal. Appl. 390 (2012), no. 1, 59-67.; Bonanno, G.; Sciammetta, A., Existence and multiplicity results to Neumann problems for elliptic equations involving the p-Laplacian, J. Math. Anal. Appl., 390, 1, 59-67 (2012) · Zbl 1246.35080
[12] Cammaroto F. and Vilasi L., Multiple solutions for a Kirchhoff-type problem involving the \({p(x)}\)-Laplacian operator, Nonlinear Anal. 74 (2011), no. 5, 1841-1852.; Cammaroto, F.; Vilasi, L., Multiple solutions for a Kirchhoff-type problem involving the \({p(x)}\)-Laplacian operator, Nonlinear Anal., 74, 5, 1841-1852 (2011) · Zbl 1213.35312
[13] Cheng B. and Wu X., Existence results of positive solutions of Kirchhoff type problems, Nonlinear Anal. 71 (2009), no. 10, 4883-4892.; Cheng, B.; Wu, X., Existence results of positive solutions of Kirchhoff type problems, Nonlinear Anal., 71, 10, 4883-4892 (2009) · Zbl 1175.35038
[14] Chipot M. and Lovat B., Some remarks on nonlocal elliptic and parabolic problems, Nonlinear Anal. 30 (1997), no. 7, 4619-4627.; Chipot, M.; Lovat, B., Some remarks on nonlocal elliptic and parabolic problems, Nonlinear Anal., 30, 7, 4619-4627 (1997) · Zbl 0894.35119
[15] Chung N. T., Multiplicity results for a class of \(p(x)\)-Kirchhoff type equations with combined nonlinearities, Electron. J. Qual. Theory Differ. Equ. 2012 (2012), 42.; Chung, N. T., Multiplicity results for a class of \(p(x)\)-Kirchhoff type equations with combined nonlinearities, Electron. J. Qual. Theory Differ. Equ., 2012 (2012) · Zbl 1340.35039
[16] Chung N. T., Multiple solutions for a \(p(x)\)-Kirchhoff-type equation with sign-changing nonlinearities, Complex Var. Elliptic Equ. 58 (2013), no. 12, 1637-1646.; Chung, N. T., Multiple solutions for a \(p(x)\)-Kirchhoff-type equation with sign-changing nonlinearities, Complex Var. Elliptic Equ., 58, 12, 1637-1646 (2013) · Zbl 1281.35034
[17] Chung N. T. and Toan H. Q., On a class of degenerate nonlocal problems with sign-changing nonlinearities, Bull. Malays. Math. Sci. Soc. (2) 37 (2014), no. 4, 1157-1167.; Chung, N. T.; Toan, H. Q., On a class of degenerate nonlocal problems with sign-changing nonlinearities, Bull. Malays. Math. Sci. Soc. (2), 37, 4, 1157-1167 (2014) · Zbl 1304.35258
[18] Corrêa F. J. S. A. and Figueiredo G. M., On an elliptic equation of p-Kirchhoff type via variational methods, Bull. Austral. Math. Soc. 74 (2006), no. 2, 263-277.; Corrêa, F. J. S. A.; Figueiredo, G. M., On an elliptic equation of p-Kirchhoff type via variational methods, Bull. Austral. Math. Soc., 74, 2, 263-277 (2006) · Zbl 1108.45005
[19] Dai G. and Hao R., Existence of solutions for a \({p(x)}\)-Kirchhoff-type equation, J. Math. Anal. Appl. 359 (2009), no. 1, 275-284.; Dai, G.; Hao, R., Existence of solutions for a \({p(x)}\)-Kirchhoff-type equation, J. Math. Anal. Appl., 359, 1, 275-284 (2009) · Zbl 1172.35401
[20] Graef J. R., Heidarkhani S. and Kong L., A variational approach to a Kirchhoff-type problem involving two parameters, Results Math. 63 (2013), no. 3-4, 877-889.; Graef, J. R.; Heidarkhani, S.; Kong, L., A variational approach to a Kirchhoff-type problem involving two parameters, Results Math., 63, 3-4, 877-889 (2013) · Zbl 1275.35108
[21] Heidarkhani S., Non-trivial solutions for a class of \({(p_1,\dots,p_n)}\)-biharmonic systems with Navier boundary conditions, Ann. Polon. Math. 105 (2012), no. 1, 65-76.; Heidarkhani, S., Non-trivial solutions for a class of \({(p_1,\dots,p_n)}\)-biharmonic systems with Navier boundary conditions, Ann. Polon. Math., 105, 1, 65-76 (2012) · Zbl 1261.35055
[22] Heidarkhani S., Non-trivial solutions for two-point boundary-value problems of fourth-order Sturm-Liouville type equations, Electron. J. Differential Equations 2012 (2012), 27.; Heidarkhani, S., Non-trivial solutions for two-point boundary-value problems of fourth-order Sturm-Liouville type equations, Electron. J. Differential Equations, 2012 (2012) · Zbl 1252.34035
[23] Heidarkhani S., Infinitely many solutions for systems of n two-point Kirchhoff-type boundary value problems, Ann. Polon. Math. 107 (2013), no. 2, 133-152.; Heidarkhani, S., Infinitely many solutions for systems of n two-point Kirchhoff-type boundary value problems, Ann. Polon. Math., 107, 2, 133-152 (2013) · Zbl 1291.34044
[24] Heidarkhani S., Afrouzi G. A. and O’Regan D., Existence of three solutions for a Kirchhoff-type boundary-value problem, Electron. J. Differential Equations 2011 (2011), 91.; Heidarkhani, S.; Afrouzi, G. A.; O’Regan, D., Existence of three solutions for a Kirchhoff-type boundary-value problem, Electron. J. Differential Equations, 2011 (2011) · Zbl 1234.34018
[25] Heidarkhani S. and Henderson J., Infinitely many solutions for nonlocal elliptic systems of \({(p_1,\dots,p_n)}\)-Kirchhoff type, Electron. J. Differential Equations 2012 (2012), 69.; Heidarkhani, S.; Henderson, J., Infinitely many solutions for nonlocal elliptic systems of \({(p_1,\dots,p_n)}\)-Kirchhoff type, Electron. J. Differential Equations, 2012 (2012) · Zbl 1254.35006
[26] Heidarkhani S. and Tian Y., Three solutions for a class of gradient Kirchhoff-type systems depending on two parameters, Dynam. Systems Appl. 20 (2011), no. 4, 551-562.; Heidarkhani, S.; Tian, Y., Three solutions for a class of gradient Kirchhoff-type systems depending on two parameters, Dynam. Systems Appl., 20, 4, 551-562 (2011) · Zbl 1251.34033
[27] Kirchhoff G., Vorlesungen über Mathematische Physik. Erster Band: Mechanik, B. G. Teubner, Leipzig, 1897.; Kirchhoff, G., Vorlesungen über Mathematische Physik. Erster Band: Mechanik (1897)
[28] Perera K. and Zhang Z., Nontrivial solutions of Kirchhoff-type problems via the Yang index, J. Differential Equations 221 (2006), no. 1, 246-255.; Perera, K.; Zhang, Z., Nontrivial solutions of Kirchhoff-type problems via the Yang index, J. Differential Equations, 221, 1, 246-255 (2006) · Zbl 1357.35131
[29] Pucci P. and Serrin J., The strong maximum principle revisited, J. Differential Equations 196 (2004), no. 1, 1-66. Erratum in: J. Differential Equations 207 (2004), no. 1, 226-227.; Pucci, P.; Serrin, J., The strong maximum principle revisited, J. Differential Equations, 196, 1, 1-66 (2004) · Zbl 1109.35022
[30] Ricceri B., A general variational principle and some of its applications. Fixed point theory with applications in nonlinear analysis, J. Comput. Appl. Math. 113 (2000), no. 1-2, 401-410.; Ricceri, B., A general variational principle and some of its applications. Fixed point theory with applications in nonlinear analysis, J. Comput. Appl. Math., 113, 1-2, 401-410 (2000) · Zbl 0946.49001
[31] Ricceri B., On an elliptic Kirchhoff-type problem depending on two parameters, J. Global Optim. 46 (2010), no. 4, 543-549.; Ricceri, B., On an elliptic Kirchhoff-type problem depending on two parameters, J. Global Optim., 46, 4, 543-549 (2010) · Zbl 1192.49007
[32] Talenti G., Some inequalities of Sobolev type on two-dimensional spheres, General Inequalities 5 (Oberwolfach 1986), Internat. Schriftenreihe Numer. Math. 80, Birkhäuser, Basel (1987), 401-408.; Talenti, G., Some inequalities of Sobolev type on two-dimensional spheres, General Inequalities 5, 401-408 (1987) · Zbl 0652.26020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.