×

Nontrivial solution for an anisotropic variable exponent problem with Neumann boundary condition. (English) Zbl 1505.35189

Summary: By using variational methods and critical point theory, we establish the existence of one nontrivial solution for a Neumann problem. We prove the existence by applying the theory of variable exponent Sobolev spaces.

MSC:

35J62 Quasilinear elliptic equations
35J25 Boundary value problems for second-order elliptic equations
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A15 Variational methods applied to PDEs
Full Text: DOI

References:

[1] Afrouzi, GA; Hadjian, A., Non-trivial solutions for nonlocal elliptic problems of Kirchhoff-type, Georgian Math. J., 23, 293-301 (2016) · Zbl 1352.34025 · doi:10.1515/gmj-2015-0054
[2] Ahmed, A.; Hjiaj, H.; Touzani, A., Existence of infinitely many weak solutions for a Neumann elliptic equations involving the \(\overrightarrow{p}(x) \)-Laplacian operator, Rend. Circ. Mat. Palermo, 64, 459-473 (2015) · Zbl 1331.35109 · doi:10.1007/s12215-015-0210-1
[3] Bonanno, G., A critical point theorem via the Ekeland variational principle, Nonlinear Anal., 75, 2992-3007 (2012) · Zbl 1239.58011 · doi:10.1016/j.na.2011.12.003
[4] Boureanu, M. M.; Matei, A.; Sofonea, M., Nonlinear problems with \(p(.) \)-growth conditions and applications to antiplane contact models, Adv. Nonlinear Stud., 14, 295-313 (2014) · Zbl 1301.35044 · doi:10.1515/ans-2014-0203
[5] Boureanu, MM; Udrea, C.; Udrea, DN, Anisotropic problems with variable exponents and constant Dirichlet conditions, Electron. J. Differ. Equ., 2013, 1-13 (2013) · Zbl 1288.35223
[6] Boureanu, MM; Rǎdulescu, VC, Anisotropic Neumann problems in Sobolev spaces with variable exponent, Nonlinear Anal., 75, 4471-4482 (2011) · Zbl 1262.35090 · doi:10.1016/j.na.2011.09.033
[7] Brezis H, Functional analysis, Sobolev spaces and partial differential equations (2011) (New York: Springer) · Zbl 1220.46002
[8] Chen, Y.; Levine, S.; Rao, R., Variable exponent linear growth functionals in image restoration, SIAM J. Appl. Math., 66, 1383-1406 (2006) · Zbl 1102.49010 · doi:10.1137/050624522
[9] Dai, G., Infinitely many solutions for a Neumann-type differential inclusion problem involving the \(p(x)\)-Laplacian, Nonlinear Anal., 70, 2297-2305 (2009) · Zbl 1170.35561 · doi:10.1016/j.na.2008.03.009
[10] Diening L, Harjulehto P, Hasto P and Ruzicka M, Lebesgue and Sobolev spaces with variable exponents (2010) (SPIN Springer’s Internal Project) · Zbl 1222.46002
[11] Ding, L.; Li, L.; Molica Bisci, G., Existence of three solutions for a class of anisotropic variable exponent problems, U.P.B. Sci. Bull. Ser. A, 77, 41-52 (2015) · Zbl 1363.58006
[12] Fan, X., Anisotropic variable exponent Sobolev spaces and \(\overrightarrow{p}(x)\)-Laplacian equations, Complex Var. Elliptic Equ., 56, 623-642 (2011) · Zbl 1236.46029 · doi:10.1080/17476931003728412
[13] Fan, X.; Ji, C., Existence of infinitely many solutions for a Neumann problem involving the \(p(x)\)-Laplacian, J. Math. Anal. Appl., 334, 248-260 (2007) · Zbl 1157.35040 · doi:10.1016/j.jmaa.2006.12.055
[14] Fan, X.; Zhao, D., On the spaces \(L^{p(x)}(\Omega )\) and \(W^{m,p(x)}(\Omega ) \), J. Math. Anal. Appl., 263, 424-446 (2001) · Zbl 1028.46041 · doi:10.1006/jmaa.2000.7617
[15] Fan, X.; Zhang, QH, Existence of solutions for \(p(x)\)-Laplacian Dirichlet problem, Nonlinear Anal., 52, 1843-1852 (2003) · Zbl 1146.35353 · doi:10.1016/S0362-546X(02)00150-5
[16] Heidarkhani, S.; Ferrara, M.; Khademloo, S., Nontrivial solutions for one-dimensional fourth-order Kirchhoff-type equations, Mediterr. J. Math., 13, 217-236 (2016) · Zbl 1341.34025 · doi:10.1007/s00009-014-0471-5
[17] EL Hssini, M.; Massar, M.; Tsouli, N., Existence of nontrivial solutions for a class of mixed boundary Laplacian systems, Adv. Dyn. Syst. Appl., 10, 47-56 (2015) · Zbl 1412.35004
[18] Khademloo, S.; Afrouzi, GA; Norouzi Ghara, T., Infinitely many solutions for anisotropic variable exponent problems, Complex Var. Elliptic Equ., 63, 1353-1369 (2018) · Zbl 1395.35090 · doi:10.1080/17476933.2017.1370462
[19] Kuridla A J and Zabarankin M, Convex functional analysis (2005) (Basel: Birkhäuser Verlag) · Zbl 1077.46002
[20] Rákosnik, J., Some remarks to anisotropic Sobolev spaces I, Beitr. Anal., 13, 55-68 (1979) · Zbl 0399.46025
[21] Rákosnik, J., Some remarks to anisotropic Sobolev spaces II, Beitr. Anal., 15, 127-140 (1981) · Zbl 0494.46034
[22] Ružička M, Electrorheological fluids: modeling and mathematical theory, volume 1748 of Lecture Notes in Mathematics (2000) (Berlin: Springer) · Zbl 0962.76001
[23] Stancu-Dumitru, D., Two nontrivial solutions for a class of anisotropic variable exponent problems, Taiwan. J. Math., 16, 1205-1219 (2012) · Zbl 1263.35086 · doi:10.11650/twjm/1500406732
[24] Zeidler E, Nonlinear functional analysis and its applications, Vol. II (1985) (Berlin: Springer) · Zbl 0583.47051
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.