×

Quantum jumps of normal polytopes. (English) Zbl 1351.52011

The authors introduce a partial order on the set of all normal polytopes in \(\mathbb R^d\) (by inclusion), denoted by NPol\((d)\). Further, they derive arithmetic bounds on arithmetic relations for it, called quantum jumps. Using the above methods the authors compute the first examples of maximal elements in NPol(4) and in NPol(5).

MSC:

52B20 Lattice polytopes in convex geometry (including relations with commutative algebra and algebraic geometry)
11H06 Lattices and convex bodies (number-theoretic aspects)
52C07 Lattices and convex bodies in \(n\) dimensions (aspects of discrete geometry)

Software:

Normaliz

References:

[1] Beck, M., Delgado, J., Gubeladze, J., Michałek, M.: Very ample and Koszul segmental fibrations. J. Algebr. Comb. 42, 165-182 (2015) · Zbl 1331.52020 · doi:10.1007/s10801-014-0577-7
[2] Bruns, W.: On the integral Carathéodory property. Exp. Math. 16, 359-365 (2007) · Zbl 1161.52009 · doi:10.1080/10586458.2007.10129007
[3] Bruns, W., Gubeladze, J.: Normality and covering properties of affine semigroups. J. Reine Angew. Math. 510, 161-178 (1999) · Zbl 0937.20036
[4] Bruns, W., Gubeladze, J.: Rectangular simplicial semigroups. In: Commutative Algebra, Algebraic Geometry, and Computational Methods (Hanoi, 1996), pp. 201-213. Springer, Singapore (1999) · Zbl 0952.20050
[5] Bruns, W., Gubeladze, J.: Polytopes, Rings, and \[KK\]-theory. Springer Monographs in Mathematics. Springer, New York (2009) · Zbl 1168.13001
[6] Bruns, W., Gubeladze, J., Henk, M., Martin, A., Weismantel, R.: A counterexample to an integer analogue of Carathéodory’s theorem. J. Reine Angew. Math. 510, 179-185 (1999) · Zbl 0938.52011
[7] Bruns, W., Ichim, B., Tim, R., Christof, \[S.: {\sf Normaliz}\] Normaliz. http://www.math.uos.de/normaliz/ · Zbl 1294.68152
[8] Cook, W., Fonlupt, J., Schrijver, A.: An integer analogue of Carathéodory’s theorem. J. Comb. Theory, Ser. B 40(1), 63-70 (1986) · Zbl 0589.52005 · doi:10.1016/0095-8956(86)90064-X
[9] Cox, D.A., Haase, C., Hibi, T., Higashitani, A.: Integer decomposition property of dilated polytopes. Electron. J. Comb. 21(4) (2014) · Zbl 1308.52012
[10] Cox, D.A., Little, J.B., Schenck, H.K.: Toric Varieties. Graduate Studies in Mathematics, vol. 124. American Mathematical Society, Providence, RI (2011) · Zbl 1223.14001
[11] Gubeladze, J.: Normal polytopes. In: Proceedings of 22nd International Conference on Formal Power Series and Algebraic Combinatorics, San Francisco, pp. 4-8 (2010). http://math.sfsu.edu/fpsac/local_proceedings.pdf
[12] Gubeladze, J.: Convex normality of rational polytopes with long edges. Adv. Math. 230, 372-389 (2012) · Zbl 1251.52008 · doi:10.1016/j.aim.2011.12.003
[13] Haase, C., Maclagan, D., Hibi, T.: Miniworkshop: Projective Normality of Smooth Toric Varieties (2007). Oberwolfach Reports, 39/2007 · Zbl 1177.14017
[14] Haase, C., Paffenholz, A., Piechnik, L., Santos, F.: Existence of unimodular triangulations—positive results. Preprint. http://arxiv.org/abs/1405.1687 · Zbl 1479.52002
[15] Miller, E., Sturmfels, B.: Combinatorial Commutative Algebra. Graduate Texts in Mathematics, vol. 227. Springer, New York (2005) · Zbl 1090.13001
[16] Payne, S.: Lattice polytopes cut out by root systems and the Koszul property. Adv. Math. 220, 926-935 (2009) · Zbl 1158.52016 · doi:10.1016/j.aim.2008.10.008
[17] Sebö, A.: Hilbert bases, Carathéodory’s theorem and combinatorial optimization. In: Proceedings of the IPCO Conference, Waterloo, pp. 431-455 (1990) · Zbl 1158.52016
[18] White, G.K.: Lattice tetrahedra. Can. J. Math. 16, 389-396 (1964) · Zbl 0124.02901 · doi:10.4153/CJM-1964-040-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.