×

Ensemble controllability by Lie algebraic methods. (English) Zbl 1350.93014

Summary: We study possibilities to control an ensemble (a parameterized family) of nonlinear control systems by a single parameter-independent control. Proceeding by Lie algebraic methods we establish genericity of exact controllability property for finite ensembles, prove sufficient approximate controllability condition for a model problem in \(\mathbb{R}^3\), and provide a variant of Rashevsky-Chow theorem for approximate controllability of control-linear ensembles.

MSC:

93B05 Controllability
93B27 Geometric methods
93C15 Control/observation systems governed by ordinary differential equations
93C10 Nonlinear systems in control theory

References:

[1] A. Agrachev and M. Caponigro, Controllability on the group of diffeomorphisms. Ann. Inst. Henri Poincaré, Anal. Non Lin.26 (2009) 2503-2509. · Zbl 1188.93016 · doi:10.1016/j.anihpc.2009.07.003
[2] A. Agrachev and Yu. Sachkov, Control Theory from the Geometric Viewpoint. Springer (2004). · Zbl 1062.93001
[3] A. Agrachev and A. Sarychev, The control of rotation for asymmetric rigid body. Probl. Control Inform. Theory12 (1983) 335-347. · Zbl 0571.70030
[4] A. Agrachev and A. Sarychev, Solid Controllability in Fluid Dynamics, in Instabilities in Models Connected with Fluid Flows I, edited by C. Bardos and A. Sarychev. Springer (2008) 1-35. · Zbl 1141.76026
[5] J.M. Ball, J.E. Marsden and M. Slemrod, Controllability for distributed bilinear systems. SIAM J. Control Optim.20 (1982) 575-597. · Zbl 0485.93015 · doi:10.1137/0320042
[6] K. Beauchard, J.-M. Coron and P. Rouchon, Controllability issues for continuous-spetrum systems and ensemble controllability of Bloch equations. Comm. Math. Phys.296 (2010) 525-557. · Zbl 1193.93073 · doi:10.1007/s00220-010-1008-9
[7] B. Bonnard, Contrôllabilité des systèmes non linéaires. C.R. Acad. Sci.292 (1981) 535-537. · Zbl 0498.93009
[8] B. Bonnard, Contrôle de l’attitude d’un satellite rigide, in Outils et modèles mathématiques pour l’automatique, l’analyse de systèmes et le traitement du signal, 3 CNRS (1983) 649-658.
[9] P.M. Dudnikov and S.N. Samborski, Criterion of controllability for systems in Banach space (generalization of Chow’s theorem). Ukrain. Matem. Zhurnal32 (1980) 649-653 (in Russian).
[10] Yu. Ledyaev, On Infinite-Dimensional Variant of Rashevskyhow Theorem. Dokl. Akad. Nauk398 (2004) 735-737.
[11] J.S. Li and N. Khaneja, Noncommuting vector fields, polynomial approximations and control of inhomogeneous quantum ensembles, Preprint [quant-ph] (2005).
[12] J.S. Li and N. Khaneja, Control of inhomogeneous quantum ensembles. Phys.Rev. A73 (2006) 030302. · doi:10.1103/PhysRevA.73.030302
[13] J.S. Li and N. Khaneja, Ensemble Control of Bloch Equations. IEEE Trans. Automatic Control54 (2009) 528-536. · Zbl 1367.93072 · doi:10.1109/TAC.2009.2012983
[14] C. Lobry, Une propriete generique des couples de champs de vecteurs. Czechoslovak Mathem. J. (1972) 230-237. · Zbl 0242.58007
[15] C. Lobry, Controllability of nonlinear systems on compact manifolds. SIAM J. Control12 (1974) 1-4. · Zbl 0286.93006 · doi:10.1137/0312001
[16] M.K. Salehani and I. Markina, Controllability on Infinite-Dimensional Manifolds: a Chow-Rashevsky theorem. Acta Appl. Math.134 (2014) 229-246. · Zbl 1306.93016 · doi:10.1007/s10440-014-9880-5
[17] H.J. Sussmann, Some properties of vector fields, which are not altered by small perturbations. J. Differ. Eq.20 (1976) 292-315. · Zbl 0346.49036 · doi:10.1016/0022-0396(76)90109-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.