×

Solid controllability in fluid dynamics. (English) Zbl 1141.76026

Bardos, Claude (ed.) et al., Instability in models connected with fluid flows I. New York, NY: Springer (ISBN 978-0-387-75216-7/hbk). International Mathematical Series (New York) 6, 1-35 (2008).
Summary: We survey results of recent activity towards studying the controllability and accessibility issues for equations of dynamics of incompressible fluids controlled by low-dimensional (degenerate) forcing. We also present new results concerning the controllability of Navier-Stokes/Euler equations on two-dimensional sphere and on a generic Riemannian surface.
For the entire collection see [Zbl 1130.76003].

MSC:

76D55 Flow control and optimization for incompressible viscous fluids
76B75 Flow control and optimization for incompressible inviscid fluids
76-02 Research exposition (monographs, survey articles) pertaining to fluid mechanics
35Q31 Euler equations
35Q30 Navier-Stokes equations

References:

[1] Agrachev, A. A.; Gamkrelidze, R. V., Exponential representation of flows and chronological calculus, Math. USSR Sb., 35, 727-785 (1979) · Zbl 0429.34044 · doi:10.1070/SM1979v035n06ABEH001623
[2] A. A. Agrachev and Yu. L. Sachkov, Lectures on Geometric Control Theory, Springer-Verlag, 2004. · Zbl 1078.93001
[3] Agrachev, A. A.; Sarychev, A. V., On reduction of smooth system linear in control, Math. USSR Sb., 58, 15-30 (1987) · Zbl 0678.49034 · doi:10.1070/SM1987v058n01ABEH003090
[4] A. A. Agrachev and A. V. Sarychev, Navier-Stokes equation controlled by degenerate forcing: controllability of finite-dimensional approximations, In: Proc. Intern. Conf. “Physics and Control 2003, St.-Petersburg, Russia, August 20-22, 2003,” CD ROM, 1346-1351.
[5] Agrachev, A. A.; Sarychev, A. V., Controllability of the Navier-Stokes equation by few low modes forcing, Dokl. Math. Sci., 69, 1-2, 112-115 (2004) · Zbl 1123.93020
[6] Agrachev, A. A.; Sarychev, A. V., Navier-Stokes equations: Controllability by means of low modes forcing, J. Math. Fluid Mech., 7, 108-152 (2005) · Zbl 1075.93014 · doi:10.1007/s00021-004-0110-1
[7] Agrachev, A. A.; Sarychev, A. V., Controllability of 2D Euler and Navier-Stokes equations by degenerate forcing, Commun. Math. Phys., 265, 673-697 (2006) · Zbl 1105.93008 · doi:10.1007/s00220-006-0002-8
[8] V. I. Arnold, Mathematical Methods of Classical Mechanics, Springer-Verlag, 1997.
[9] V. I. Arnold, Lectures on Partial Differential Equations, Springer-Verlag, 2004. · Zbl 1076.35001
[10] Arnold, V. I.; Khesin, B. M., Topological Methods in Hydrodynamics (1998), New-York: Springer-Verlag, New-York · Zbl 0902.76001
[11] J.-M. Coron, Return method: some applications to flow control, In: Mathematical Control Theory, ICTP Lecture Notes Series Vol. 8. Parts 1-2, 2002. · Zbl 1019.93025
[12] Dubrovin, B.; Novikov, S.; Fomenko, A., Modern Geometry - Methods and Applications. Part I (1984), New York: Springer-Verlag, New York · Zbl 0529.53002
[13] E., W.; Mattingly, J. C., Ergodicity for the Navier-Stokes equation with degenerate random forcing: finite-dimensional approximation, Comm. Pure Appl. Math., 54, 11, 1386-1402 (2001) · Zbl 1024.76012 · doi:10.1002/cpa.10007
[14] A. V. Fursikov, Optimal Control of Distributed Systems. Theory and Applications, Am. Math. Soc., Providence, 2000. · Zbl 1027.93500
[15] Fursikov, A. V.; Yu Imanuilov, O., Exact controllability of the Navier-Stokes and Boussinesq equations, Russian Math. Surv., 54, 3, 565-618 (1999) · Zbl 0970.35116 · doi:10.1070/rm1999v054n03ABEH000153
[16] Gamkrelidze, R. V., On some extremal problems in the theory of differential equations with applications to the theory of optimal control, J. Soc. Ind. Appl. Math. Ser. A: Control, 3, 106-128 (1965) · Zbl 0296.49009
[17] Gamkrelidze, R. V., Principles of Optimal Control Theory (1978), New York: Plenum Press, New York · Zbl 0401.49001
[18] Jurdjevic, V., Geometric Control Theory (1997), Cambridge: Cambridge University Press, Cambridge · Zbl 0940.93005
[19] T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, 1966. · Zbl 0148.12601
[20] McShane, E. J., Generalized curves, Duke Math. J., 6, 513-536 (1940) · Zbl 0023.39801 · doi:10.1215/S0012-7094-40-00642-1
[21] Rodrigues, S., Navier-Stokes equation on the rectangle: controllability by means of low mode forcing, J. Dyn. Control Syst., 12, 517-562 (2006) · Zbl 1105.35085 · doi:10.1007/s10883-006-0004-z
[22] S. Rodrigues, Navier-Stokes Equation on a Plane Bounded Domain: Continuity Properties for Controllability, ISTE, Hermes Publ., 2007. [To appear]
[23] Rodrigues, S., Controlled PDE on Compact Riemannian Manifolds: Controllability Issues (2007), Lisbon, Portugal: Proc. Workshop Mathematical Control Theory and Finance, Lisbon, Portugal
[24] S. Rodrigues, 2D Navier-Stokes equation: A saturating set for the half-sphere. [Private communication]
[25] Romito, M., Ergodicity of finite-dimensional approximations of the 3D Navier-Stokes equations forced by a degenerate noise, J. Stat. Phys., 114, 1-2, 155-177 (2004) · Zbl 1060.76027 · doi:10.1023/B:JOSS.0000003108.92097.5c
[26] Shirikyan, A., Approximate controllability of three-dimensional Navier-Stokes equations, Commun. Math. Phys., 266, 1, 123-151 (2006) · Zbl 1105.93016 · doi:10.1007/s00220-006-0007-3
[27] Shirikyan, A., Exact controllability in projections for three-dimensional Navier-Stokes equations, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 24, 521-537 (2007) · Zbl 1119.93021
[28] Young, L. C., Generalized curves and the existence of an attained absolute minimum in the calculus of variations, Compt. Rend. Soc. Sci. Lett. Varsovie, cl. III, 30, 212-234 (1937) · Zbl 0019.21901
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.