×

A multiscale two-point flux-approximation method. (English) Zbl 1349.76368

Summary: A large number of multiscale finite-volume methods have been developed over the past decade to compute conservative approximations to multiphase flow problems in heterogeneous porous media. In particular, several iterative and algebraic multiscale frameworks that seek to reduce the fine-scale residual towards machine precision have been presented.common for all such methods is that they rely on a compatible primal-dual coarse partition, which makes it challenging to extend them to stratigraphic and unstructured grids. Herein, we propose a general idea for how one can formulate multiscale finite-volume methods using only a primal coarse partition. To this end, we use two key ingredients that are computed numerically: (i) elementary functions that correspond to flow solutions used in transmissibility upscaling, and (ii) partition-of-unity functions used to combine elementary functions into basis functions. We exemplify the idea by deriving a multiscale two-point flux-approximation (MsTPFA) method, which is robust with regards to strong heterogeneities in the permeability field and can easily handle general grids with unstructured fine- and coarse-scale connections. The method can easily be adapted to arbitrary levels of coarsening, and can be used both as a standalone solver and as a preconditioner. Several numerical experiments are presented to demonstrate that the MsTPFA method can be used to solve elliptic pressure problems on a wide variety of geological models in a robust and efficient manner.

MSC:

76M12 Finite volume methods applied to problems in fluid mechanics
65N08 Finite volume methods for boundary value problems involving PDEs
76S05 Flows in porous media; filtration; seepage

Software:

MRST; Matlab; METIS
Full Text: DOI

References:

[1] Efendiev, Y.; Hou, T. Y., Multiscale Finite Element Methods, Surveys and Tutorials in the Applied Mathematical Sciences, vol. 4 (2009), Springer Verlag: Springer Verlag New York · Zbl 1163.65080
[2] Jenny, P.; Lee, S. H.; Tchelepi, H. A., Multi-scale finite-volume method for elliptic problems in subsurface flow simulation, J. Comput. Phys., 187, 47-67 (2003) · Zbl 1047.76538
[3] Chen, Z.; Hou, T., A mixed multiscale finite element method for elliptic problems with oscillating coefficients, Math. Comput., 72, 541-576 (2003) · Zbl 1017.65088
[4] Aarnes, J. E., On the use of a mixed multiscale finite element method for greater flexibility and increased speed or improved accuracy in reservoir simulation, Multiscale Model. Simul., 2, 3, 421-439 (2004) · Zbl 1181.76125
[5] Lee, S. H.; Zhou, H.; Tchelepi, H. A., Adaptive multiscale finite-volume method for nonlinear multiphase transport in heterogeneous formations, J. Comput. Phys., 228, 24, 9036-9058 (2009) · Zbl 1388.76179
[6] Lunati, I.; Jenny, P., Multiscale finite-volume method for compressible multiphase flow in porous media, J. Comput. Phys., 216, 2, 616-636 (2006) · Zbl 1220.76049
[7] Lunati, I.; Jenny, P., Multiscale finite-volume method for density-driven flow in porous media, Comput. Geosci., 12, 3, 337-350 (2008) · Zbl 1259.76051
[8] Zhou, H.; Tchelepi, H. A., Operator-based multiscale method for compressible flow, SPE J., 13, 2, 267-273 (2008)
[9] Hajibeygi, H.; Bonfigli, G.; Hesse, M. A.; Jenny, P., Iterative multiscale finite-volume method, J. Comput. Phys., 227, 19, 8604-8621 (2008) · Zbl 1151.65091
[10] Hajibeygi, H.; Jenny, P., Adaptive iterative multiscale finite volume method, J. Comput. Phys., 230, 3, 628-643 (2011) · Zbl 1283.76041
[11] Lunati, I.; Lee, S. H., An operator formulation of the multiscale finite-volume method with correction function, Multiscale Model. Simul., 8, 1, 96-109 (2009) · Zbl 1404.65222
[12] Lunati, I.; Tyagi, M.; Lee, S. H., An iterative multiscale finite volume algorithm converging to the exact solution, J. Comput. Phys., 230, 5, 1849-1864 (2011) · Zbl 1391.76428
[13] Lee, S. H.; Wolfsteiner, C.; Tchelepi, H., Multiscale finite-volume formulation for multiphase flow in porous media: black oil formulation of compressible, three phase flow with gravity, Comput. Geosci., 12, 3, 351-366 (2008) · Zbl 1259.76049
[14] Hajibeygi, H.; Tchelepi, H. A., Compositional multiscale finite-volume formulation, SPE J., 19, 2, 316-326 (2014)
[15] Møyner, O.; Lie, K.-A., The multiscale finite-volume method on stratigraphic grids, SPE J. (2014)
[16] Møyner, O., Multiscale finite-volume methods on unstructured grids (2012), Norwegian University of Science and Technology: Norwegian University of Science and Technology Trondheim, Master’s thesis
[17] Lunati, I.; Jenny, P., Treating highly anisotropic subsurface flow with the multiscale finite-volume method, Multiscale Model. Simul., 6, 1, 308-318 (2007) · Zbl 1388.76366
[18] Kippe, V.; Aarnes, J. E.; Lie, K.-A., A comparison of multiscale methods for elliptic problems in porous media flow, Comput. Geosci., 12, 3, 377-398 (2008) · Zbl 1259.76047
[19] Hesse, M. A.; Mallison, B. T.; Tchelepi, H. A., Compact multiscale finite volume method for heterogeneous anisotropic elliptic equations, Multiscale Model. Simul., 7, 2, 934-962 (2008) · Zbl 1277.76104
[20] Wang, Y.; Hajibeygi, H.; Tchelepi, H. A., Algebraic multiscale solver for flow in heterogeneous porous media, J. Comput. Phys., 259, 284-303 (2014) · Zbl 1349.76835
[21] Aarnes, J. E.; Krogstad, S.; Lie, K.-A., A hierarchical multiscale method for two-phase flow based upon mixed finite elements and nonuniform coarse grids, Multiscale Model. Simul., 5, 2, 337-363 (2006) · Zbl 1124.76022
[22] Aarnes, J. E.; Krogstad, S.; Lie, K.-A., Multiscale mixed/mimetic methods on corner-point grids, Comput. Geosci., 12, 3, 297-315 (2008) · Zbl 1259.76065
[23] Natvig, J. R.; Skaflestad, B.; Bratvedt, F.; Bratvedt, K.; Lie, K.-A.; Laptev, V.; Khataniar, S. K., Multiscale mimetic solvers for efficient streamline simulation of fractured reservoirs, SPE J., 16, 4, 880-888 (2011)
[24] Alpak, F. O.; Pal, M.; Lie, K.-A., A multiscale method for modeling flow in stratigraphically complex reservoirs, SPE J., 17, 4, 1056-1070 (2012)
[25] Pal, M.; Lamine, S.; Lie, K.-A.; Krogstad, S., Multiscale method for simulating two and three-phase flow in porous media, (SPE Reservoir Simulation Symposium. SPE Reservoir Simulation Symposium, The Woodlands, Texas, USA, 18-20 February 2013 (2013)), SPE 163669-MS
[26] Krogstad, S.; Lie, K.-A.; Skaflestad, B., Mixed multiscale methods for compressible flow, (Proceedings of ECMOR XIII - 13th European Conference on the Mathematics of Oil Recovery (2012), EAGE: EAGE Biarritz, France)
[27] Krogstad, S., A sparse basis POD for model reduction of multiphase compressible flow, (2011 SPE Reservoir Simulation Symposium. 2011 SPE Reservoir Simulation Symposium, The Woodlands, Texas, USA, 21-23 February 2011 (2011))
[28] Krogstad, S.; Lie, K.-A.; Nilsen, H. M.; Natvig, J. R.; Skaflestad, B.; Aarnes, J. E., A multiscale mixed finite-element solver for three-phase black-oil flow, (SPE Reservoir Simulation Symposium. SPE Reservoir Simulation Symposium, The Woodlands, TX, USA, 2-4 February 2009 (2009))
[29] Lie, K.-A.; Krogstad, S.; Ligaarden, I. S.; Natvig, J. R.; Nilsen, H.; Skaflestad, B., Open-source MATLAB implementation of consistent discretisations on complex grids, Comput. Geosci., 16, 297-322 (2012) · Zbl 1348.86002
[30] Smith, B. F.; Bjørstad, P. E.; Gropp, W. D., Domain Decomposition, Parallel Multilevel Methods for Elliptic Partial Differential Equations (1996), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0857.65126
[32] Gerritsen, M.; Lambers, J. V., Integration of local-global upscaling and grid adaptivity for simulation of subsurface flow in heterogeneous formations, Comput. Geosci., 12, 2, 193-208 (2008) · Zbl 1159.76362
[33] Lambers, J. V.; Gerritsen, M. G.; Mallison, B. T., Accurate local upscaling with variable compact multipoint transmissibility calculations, Comput. Geosci., 12, 3, 399-416 (2008) · Zbl 1259.76048
[34] Chen, T.; Gerritsen, M. G.; Durlofsky, L. J.; Lambers, J. V., Adaptive local-global VCMP methods for coarse-scale reservoir modeling, (SPE Reservoir Simulation Symposium. SPE Reservoir Simulation Symposium, The Woodlands, Texas, 2-4 February 2009 (2009))
[35] Chen, T.; Gerritsen, M. G.; Lambers, J. V.; Durlofsky, L. J., Global variable compact multipoint methods for accurate upscaling with full-tensor effects, Comput. Geosci., 14, 1, 65-81 (2010) · Zbl 1398.76169
[36] Natvig, J. R.; Lie, K.-A.; Eikemo, B.; Berre, I., An efficient discontinuous Galerkin method for advective transport in porous media, Adv. Water Resour., 30, 12, 2424-2438 (2007)
[37] Hajibeygi, H., Iterative multiscale finite volume method for multiphase flow in porous media with complex physics (2011), ETH: ETH Zurich, Ph.D. thesis
[38] The MATLAB reservoir simulation toolbox, version 2013a (Apr. 2013)
[39] Metis - serial graph partitioning and fill-reducing matrix ordering (2012)
[40] Lie, K.-A.; Natvig, J. R.; Krogstad, S.; Yang, Y.; Wu, X.-H., Grid adaptation for the Dirichlet-Neumann representation method and the multiscale mixed finite-element method, Comput. Geosci. (2014) · Zbl 1386.76101
[41] Christie, M. A.; Blunt, M. J., Tenth SPE comparative solution project: a comparison of upscaling techniques, SPE Reserv. Eval. Eng., 4, 308-317 (2001)
[42] Nordbotten, J. M.; Keilegavlen, E.; Sandvin, A., Mass conservative domain decomposition for porous media flow, (Petrova, R., Finite Volume Method-Powerful Means of Engineering Design (2012), InTech Europe: InTech Europe Rijeka, Croatia), 235-256
[43] Zhou, H.; Tchelepi, H. A., Two-stage algebraic multiscale linear solver for highly heterogeneous reservoir models, SPE J., 17, 2, 523-539 (2012)
[44] Sandvin, A.; Keilegavlen, E.; Nordbotten, J. M., Auxiliary variables for 3d multiscale simulations in heterogeneous porous media, J. Comput. Phys., 238, 141-153 (2013) · Zbl 1286.65179
[45] Jenny, P.; Lee, S. H.; Tchelepi, H. A., Adaptive multiscale finite-volume method for multiphase flow and transport in porous media, Multiscale Model. Simul., 3, 1, 50-64 (2004) · Zbl 1160.76372
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.