×

On the construction of a third-order accurate monotone convection scheme with application to turbulent flows in general domains. (English) Zbl 0864.76070

A formally third-order accurate finite volume upwind scheme which preserves monotonicity is constructed. It is based on a third-order polynomial interpolant in Leonard’s normalized variable space. A flux limiter is derived using the fact that there exists a one-to-one map between normalized variable and TVD spaces. This scheme is implemented in a staggered general coordinates finite volume algorithm including the standard \(k-\varepsilon\) model and applied to the turbulence transport equations. A number of test problems demonstrate the utility of the proposed scheme.

MSC:

76M25 Other numerical methods (fluid mechanics) (MSC2010)
76F10 Shear flows and turbulence
Full Text: DOI

References:

[1] Leonard, Comput. Methods Appl. Mech. Eng. 19 pp 59– (1979) · Zbl 0423.76070 · doi:10.1016/0045-7825(79)90034-3
[2] Raithby, Comput. Methods Appl. Mech. Eng. 9 pp 153– (1976) · Zbl 0347.76066 · doi:10.1016/0045-7825(76)90058-X
[3] Harten, J. Comput. Phys. 49 pp 357– (1984) · Zbl 0565.65050 · doi:10.1016/0021-9991(83)90136-5
[4] Sweby, SIAM J. Numer. Anal. 21 pp 995– (1984) · Zbl 0565.65048 · doi:10.1137/0721062
[5] Numerical Computation of Internal and External Flows, Vols 1 and 2, Wiley, Chichester, 1990.
[6] Arminjon, J. Comput. Phys. 106 pp 176– (1993) · Zbl 0771.65062 · doi:10.1006/jcph.1993.1101
[7] Gaskell, Int. j. numer. methods fluids 8 pp 617– (1988) · Zbl 0668.76118 · doi:10.1002/fld.1650080602
[8] Leonard, Int. j. numer. methods fluids 8 pp 1291– (1988) · Zbl 0667.76125 · doi:10.1002/fld.1650081013
[9] Tamamidis, Int. j. numer. methods fluids 16 pp 931– (1993) · Zbl 0781.76068 · doi:10.1002/fld.1650161006
[10] Mynett, Appl. Sci. Res. 48 pp 175– (1991) · Zbl 0718.76078 · doi:10.1007/BF02027966
[11] Segal, Int. j. numer. methods fluids 15 pp 411– (1992) · Zbl 0753.76140 · doi:10.1002/fld.1650150404
[12] van Kan, SIAM J. Sci. Stat. Comput. 7 pp 870– (1986) · Zbl 0594.76023 · doi:10.1137/0907059
[13] Launder, Comput. Methods Appl. Mech. Eng. 3 pp 269– (1974) · Zbl 0277.76049 · doi:10.1016/0045-7825(74)90029-2
[14] Zijlema, Comput. Fluids 24 pp 209– (1995) · Zbl 0826.76075 · doi:10.1016/0045-7930(94)00031-S
[15] and (eds), Numerical Methods for Advection-Diffusion Problems, NNFM Vol. 45, Vieweg, Braunschweig, 1993. · Zbl 0788.00033
[16] Smith, Numer. Heat Transfer 5 pp 439– (1982) · doi:10.1080/10407788208913458
[17] Deshpande, J. Fluid Mech. 97 pp 65– (1980) · doi:10.1017/S0022112080002431
[18] Uberoi, Phys. Fluids 13 pp 2205– (1970) · doi:10.1063/1.1693225
[19] and , A First Course in Turbulence, MIT Press, Cambridge, MA, 1983.
[20] Zhu, Int. j. numer. methods fluids 19 pp 939– (1994) · doi:10.1002/fld.1650191005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.