×

Geometric approach to dynamics obtained by deformation of time-dependent Lagrangians. (English) Zbl 1349.53110

Summary: The relationship of equations of motion of a Lagrangian \(\phi (L)\) to those of \(L\) is studied in the non-autonomous case, and the question of the existence of a function \(\phi \) such that \(\phi (L)\) is dynamically equivalent to \(L\) is answered.

MSC:

53D12 Lagrangian submanifolds; Maslov index
53Z05 Applications of differential geometry to physics
70G45 Differential geometric methods (tensors, connections, symplectic, Poisson, contact, Riemannian, nonholonomic, etc.) for problems in mechanics
70H03 Lagrange’s equations
Full Text: DOI

References:

[1] Cariñena, JF; Fernández-Núñez, J, Geometric approach to dynamics obtained by deformation of Lagrangians, Nonlinear Dyn., 83, 457-461, (2015) · Zbl 1349.70034 · doi:10.1007/s11071-015-2340-6
[2] Cieśliński, JL; Nikiciuk, T, A direct approach to the construction of standard and non-standard Lagrangians for dissipative-like dynamical systems with variable coefficients, J. Phys. A Math. Theor., 43, 175205, (2010) · Zbl 1273.70024 · doi:10.1088/1751-8113/43/17/175205
[3] El-Nabulsi, AR, Non-linear dynamics with non-standard Lagrangians, Qual. Theory Dyn. Syst., 12, 273-291, (2013) · Zbl 1322.37037 · doi:10.1007/s12346-012-0074-0
[4] Abraham, R., Marsden, J.E.: Foundations of Mechanics, 2nd edn. Benjamin, Reading (1978) · Zbl 0393.70001
[5] Crampin, M., Pirani, F.A.E.: Applicable Differential Geometry. Cambridge University Press, Cambridge (1986) · Zbl 0606.53001
[6] Saunders, D.J.: The Geometry of Jet Bundles, Lecture Notes in Mathematics, vol. 142. Cambridge University Press, Cambridge (1989) · Zbl 0665.58002 · doi:10.1017/CBO9780511526411
[7] Chandrasekar, VK; Senthilvelan, M; Lakshmanan, M, Unusual Liénard-type nonlinear oscillator, Phys. Rev. E, 72, 066203, (2005) · doi:10.1103/PhysRevE.72.066203
[8] Cariñena, JF; Rañada, MF; Santander, M, Lagrangian formalism for nonlinear second-order Riccati systems: one-dimensional integrability and two-dimensional superintegrability, J. Math. Phys., 46, 062703, (2005) · Zbl 1110.37051 · doi:10.1063/1.1920287
[9] Helmholtz, H, Über die physikalische bedeutung des princips der kleinsten wirkung, J. Reine Angew. Math., 100, 137-141, (1887) · JFM 18.0941.01
[10] Darboux, G.: Leçons sur la Théorie Génerale des Surfaces, vol. 3. Gauthier-Villards, Paris (1894) · JFM 25.1159.02
[11] Douglas, J, Solution of the inverse problem of the calculus of variations, Trans. Amer. Math. Soc., 50, 71-128, (1941) · Zbl 0025.18102 · doi:10.1090/S0002-9947-1941-0004740-5
[12] Nucci, M.C., Tamizhmani, K.M.: Lagrangians for dissipative nonlinear oscillators: the method of Jacobi last multiplier. J. Nonlinear Math. Phys. 17, 167-178 (2010) · Zbl 1206.34013
[13] Musielak, ZE, Standard and non-standard Lagrangians for dissipative dynamical systems with variable coefficients, J. Phys. A Math. Theor., 41, 055205, (2008) · Zbl 1136.37044 · doi:10.1088/1751-8113/41/5/055205
[14] Musielak, ZE; Roy, D; Swift, LD, Method to derive Lagrangian and Hamiltonian for a nonlinear dynamical system with variable coefficients, Chaos, Solitons and Fractals, 38, 894-902, (2008) · Zbl 1146.70336 · doi:10.1016/j.chaos.2007.06.076
[15] Musielak, ZE, General conditions for the existence of non-standard Lagrangians for dissipative dynamical systems, Chaos Solitons Fractals, 42, 2645-2652, (2009) · Zbl 1198.34057 · doi:10.1016/j.chaos.2009.03.171
[16] Saha, A., Talukdar, B.: On the Non-standard Lagrangian Equations. arXiv: 1301.2667 (2013) · JFM 67.1038.01
[17] Saha, A; Talukdar, B, Inverse variational problem for non-standard Lagrangians, Rep. Math. Phys., 73, 299-309, (2014) · Zbl 1326.49059 · doi:10.1016/S0034-4877(14)60046-X
[18] Chandrasekar, VK; Senthilvelan, M; Lakshmanan, M, On the Lagrangian and Hamiltonian description of the damped linear harmonic oscillator, J. Math. Phys., 48, 032701, (2007) · Zbl 1137.70344 · doi:10.1063/1.2711375
[19] Currie, DG; Saletan, EJ, \(q\)-equivalent particle Hamiltonians. the classical one-dimensional case, J. Math. Phys., 7, 967-974, (1966) · doi:10.1063/1.1705010
[20] Hojman, S; Harleston, H, Equivalent Lagrangians: multidimensional case, J. Math. Phys., 22, 1414-1419, (1981) · Zbl 0522.70024 · doi:10.1063/1.525062
[21] Cariñena, JF; Ibort, LA, Non-Noether constants of motion, J. Phys. A Math. Gen., 16, 1-7, (1983) · Zbl 0521.58055 · doi:10.1088/0305-4470/16/1/010
[22] Riewe, F, Non-conservative Lagrangian and Hamiltonian mechanics, Phys. Rev. E, 53, 1890-1899, (1996) · doi:10.1103/PhysRevE.53.1890
[23] El-Nabulsi, RA, A generalized nonlinear oscillator from non-standard degenerate Lagrangians and its consequent Hamiltonian formalism, Proc. Natl. Acad. Sci. India Sect. A Phys. Sci., 84, 563-569, (2014) · Zbl 1314.34077 · doi:10.1007/s40010-014-0159-z
[24] El-Nabulsi, RA, Non-standard power-law Lagrangians in classical and quantum dynamics, Appl. Math. Lett., 43, 120-127, (2015) · Zbl 1317.81139 · doi:10.1016/j.aml.2014.12.002
[25] El-Nabulsi, AR, Modified proca equation and modified dispersion relation from a power-law Lagrangian functional, Indian J. Phys., 87, 465-470, (2013) · doi:10.1007/s12648-012-0237-5
[26] El-Nabulsi, RA, Non-standard Lagrangians in rotational dynamics and the modified Navier-Stokes equation, Nonlinear Dyn., 79, 2055-2068, (2015) · Zbl 1318.70017 · doi:10.1007/s11071-014-1794-2
[27] Santilli, R.M.: Foundations of Theoretical Mechanics I. Springer, New York (1978) · Zbl 0401.70015 · doi:10.1007/978-3-662-25771-5
[28] Cariñena, JF; Fernández-Núñez, J; Rañada, MF, Singular Lagrangians affine in velocities, J. Phys. A Math. Gen., 36, 3789-3807, (2003) · Zbl 1066.70019 · doi:10.1088/0305-4470/36/13/311
[29] Cariñena, JF; Crampin, M; Ibort, LA, On the multisymplectic formalism for first order field theories, Diff. Geom. Appl., 1, 345-374, (1991) · Zbl 0782.58057 · doi:10.1016/0926-2245(91)90013-Y
[30] Saunders, DJ, Homogeneous Lagrangian systems, Rep. Math. Phys., 51, 315-324, (2003) · Zbl 1071.70011 · doi:10.1016/S0034-4877(03)80025-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.