×

Constructing Ramsey graphs from Boolean function representations. (English) Zbl 1349.05230

Summary: Explicit construction of Ramsey graphs or graphs with no large clique or independent set, has remained a challenging open problem for a long time. While Erdős’ probabilistic argument shows the existence of graphs on \(2^n\) vertices with no clique or independent set of size \(2n\), the best explicit constructions achieve a far weaker bound. There is a connection between Ramsey graph constructions and polynomial representations of Boolean functions due to Grolmusz; a low degree representation for the OR function can be used to explicitly construct Ramsey graphs (see [V. Grolmusz, Lect. Notes Comput. Sci. 1276, 82–90 (1997; Zbl 0888.05053); Combinatorica 20, No. 1, 71–86 (2000; Zbl 0949.05083)]).
We generalize the above relation by proposing a new framework. We propose a new definition of OR representations: a pair of polynomials represent the OR function if the union of their zero sets contains all points in \(\{0, 1\}^n\) except the origin. We give a simple construction of a Ramsey graph using such polynomials. Furthermore, we show that all the known algebraic constructions, ones to due to P. Frankl and R. M. Wilson [Combinatorica 1, 357–368 (1981; Zbl 0498.05048)], Grolmusz [Zbl 0949.05083, loc. cit.] and N. Alon [ibid. 18, No. 3, 301–310 (1998; Zbl 0921.05039)] are captured by this framework; they can all be derived from various OR representations of degree \(O(\sqrt{n})\) based on symmetric polynomials.

Thus the barrier to better Ramsey constructions through such algebraic methods appears to be the construction of lower degree representations. Using new algebraic techniques, we show that better bounds cannot be obtained using symmetric polynomials.

MSC:

05C55 Generalized Ramsey theory
05C50 Graphs and linear algebra (matrices, eigenvalues, etc.)
Full Text: DOI

References:

[1] Alon, N.; Beigel, R., Lower bounds for approximations by low degree polynomials over ℤm (2001)
[2] N. Alon: The Shannon capacity of a union, Combinatorica, 18 (1998), 301-310. · Zbl 0921.05039 · doi:10.1007/PL00009824
[3] B. Barak: A simple explicit construction of an nõ(log n) Ramsey graph, arXiv.org, math.CO/0601651, 2006.
[4] D. A. Barrington, R. Beigel and S. Rudich: Representing Boolean functions as polynomials modulo composite numbers, Computational Complexity, 4 (1994), 367-382. · Zbl 0829.68057 · doi:10.1007/BF01263424
[5] L. Babai and P. Frankl: Linear Algebra Methods in Combinatorics, Preliminary version 2, 1992.
[6] L. Babai, P. Frankl, S. Kutin, and D. Štefankovič Set systems with restricted intersections modulo prime powers, Journal of Combinatorial Theory, Ser. A, 95 (2001). · Zbl 0971.05107
[7] Bhatnagar, N.; Gopalan, P.; Lipton, R. J., Symmetric polynomials over ℤm and simultaneous communication protocols (2003)
[8] Barak, B.; Rao, A.; Shaltiel, R.; Wigderson, A., 2-source dispersers for no(1) entropy and Ramsey graphs beating the Frankl-Wilson construction (2006) · Zbl 1301.68191
[9] Dvir, Z.; Gopalan, P.; Yekhanin, S., Matching vector codes (2010)
[10] Efremenko, K., 3-query locally decodable codes of subexponential length, 39-44 (2009) · Zbl 1304.94124 · doi:10.1145/1536414.1536422
[11] P. Erdös: Some remarks on the theory of graphs. Bulletin of the A. M. S.,53 (1947), 292-294. · Zbl 0032.19203 · doi:10.1090/S0002-9904-1947-08785-1
[12] P. Frankl and R. Wilson: Intersection theorems with geometric consequences, Combinatorica, 1 (1981), 357-368. · Zbl 0498.05048 · doi:10.1007/BF02579457
[13] Gopalan, P., Constructing Ramsey graphs from Boolean function representations (2006)
[14] Gopalan, P., Query-efficient algorithms for polynomial interpolation over composites (2006) · Zbl 1192.68388
[15] F. Green: Complex Fourier technique for lower bounds on the mod-m degree, Computational Complexity, 9 (2000), 16-38. · Zbl 0963.68075 · doi:10.1007/PL00001599
[16] V. Grolmusz: On the weak mod m representation of Boolean functions. Chicago Journal of Theoretical Computer Science, 2 (1995). · Zbl 0922.06014
[17] Grolmusz, V., On set systems with restricted intersections modulo a composite number, 82-90 (1997) · Zbl 0888.05053
[18] V. Grolmusz: Superpolynomial size set-systems with restricted intersections mod 6 and explicit Ramsey graphs, Combinatorica, 20 (2000), 71-86. · Zbl 0949.05083 · doi:10.1007/s004930070032
[19] V. Grolmusz: Constructing set systems with prescribed intersection sizes, Journal of Algorithms, 44 (2002), 321-337. · Zbl 1014.68122 · doi:10.1016/S0196-6774(02)00204-3
[20] G. H. Hardy and E. M. Wright: An Introduction to the Theory of Numbers, Clarendon Press, Oxford, 1985.
[21] S. Kutin: Constructing large set systems with given intersection sizes modulo composite numbers, Combinatorics, Probability and Computing, 11 (2002). · Zbl 1013.05082
[22] M. Naor: Constructing Ramsey graphs from small probability spaces, Manuscript, available online, 1993.
[23] Raghavendra, P., A note on Yekhanin’s locally decodable codes (2007)
[24] Smolensky, R., On representations by low-degree polynomials (1993)
[25] G. Tardos and D. Barrington: A lower bound on the mod 6 degree of the OR function, Computational Complexity, 7 (1998), 99-108. · Zbl 0936.68051 · doi:10.1007/PL00001597
[26] S.-C. Tsai: Lower bounds on representing Boolean functions as polynomials in ℤm, SIAM Journal of Discrete Mathematics, 9 (1996), 55-62. · Zbl 0841.68064 · doi:10.1137/S0895480193255505
[27] Williams, R., Non-uniform acc circuit lower bounds (2011)
[28] S. Yekhanin: Towards 3-query locally decodable codes of subexponential length, Journal of the ACM, 55 (2008), 1-16. · Zbl 1311.94125 · doi:10.1145/1326554.1326555
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.