×

Representing Boolean functions as polynomials modulo composite numbers. (English) Zbl 0829.68057

Summary: Define the \(\text{MOD}_m\)-degree of a boolean function \(F\) to be the smallest degree of any polynomial \(P\), over the ring of integers modulo \(m\), such that for all \(0 - 1\) assignments \(\vec x\), \(F (\vec x) = 0\) iff \(P (\vec x) = 0\). We obtain the unexpected result that the \(\text{MOD}_m\)-degree of the OR of \(N\) variables is \(O (\root r \of {N})\), where \(r\) is the number of distinct prime factors of \(m\). This is optimal in the case of representation by symmetric polynomials. The \(\text{MOD}_n\) function is 0 if the number of input ones is a multiple of \(n\) and is one otherwise. We show that the \(\text{MOD}_m\)-degree of both the \(\text{MOD}_n\) and \(\neg \text{MOD}_n\) functions is \(N^{\Omega (1)}\) exactly when there is a prime dividing \(n\) but not \(m\). The \(\text{MOD}_m\)-degree of the \(\text{MOD}_m\) function is 1; we show that the \(\text{MOD}_m\)-degree of \(\neg \text{MOD}_m\) is \(N^{ \Omega (1)}\) if \(m\) is not a power of a prime, \(O(1)\) otherwise. A corollary is that there exists an oracle relative to which the \(\text{MOD}_mP\) classes (such as \(\oplus P)\) have this structure: \(\text{MOD}_mP\) is closed under complementation and union iff \(m\) is a prime power, and \(\text{MOD}_nP\) is a subset of \(\text{MOD}_mP\) iff all primes dividing \(n\) also divide \(m\).

MSC:

68Q15 Complexity classes (hierarchies, relations among complexity classes, etc.)
68W30 Symbolic computation and algebraic computation
Full Text: DOI

References:

[1] L. Babai and L. Fortnow, A characterization of #P by arithmetic straight-line programs. InProc. 31st Ann. IEEE Symp. Found. of Comput. Sci., 1990, 26-34.
[2] L. Babai, N. Nisan, and M. Szegedy, Multiparty protocols and pseudorandom sequences. InProc. Twenty-first ACM Symp. Theor. Comput., 1989, 1-11.
[3] D. A. Barrington,Width 3 permutation branching programs. Technical Report TM-291, MIT Laboratory for Computer Science, Cambridge, Mass., Dec. 1985.
[4] D. A. Barrington,A note on a theorem of Razborov. Technical Report COINS TR 87-93, COINS Dept., U. of Massachusetts, Amherst, Mass., July 1986.
[5] D. A. Barrington, Bounded-width polynomial-size branching programs recognize exactly those languages inNC 1.J. Comput. System Sci. 38 (1989), 150-164. · Zbl 0667.68059 · doi:10.1016/0022-0000(89)90037-8
[6] D. A. M. Barrington,The current state of circuit lower bounds. Technical Report COINS TR 90-61, COINS Dept., U. of Massachusetts, Amherst, Mass., July 1990.
[7] D. A. M. Barrington, Some problems involving Razborov-Smolensky polynomials. InBoolean Function Complexity, ed.M. S. Patterson, London Mathematical Society Lecture Note Series 169, Cambridge University Press, 1992a, 109-128.
[8] D. A. M. Barrington, Quasipolynomial size circuit complexity. InStructure in Complexity Theory: Seventh Annual Conference, 1992b, 86-93.
[9] D. A. M. Barrington, R. Beigel, and S. Rudich, Representing Boolean functions as polynomials modulo composite numbers. InProc. Twenty-fourth ACM Symp. Theor. Comput., 1992, 455-461. · Zbl 0829.68057
[10] D. A. M. Barrington, H. Straubing, andD. Thérien, Non-uniform automata over groups.Inform. and Comput. 89 (1990), 109-132. · Zbl 0727.68070 · doi:10.1016/0890-5401(90)90007-5
[11] D. A. M. Barrington andD. Thérien, Finite monoids and the fine structure ofNC 1.J. Assoc. Comp. Mach. 35 (1988), 941-952. · Zbl 0667.68068
[12] R. Beigel, Relativized counting classes: Relations among thresholds, parity, and mods.J. Comput. System Sci. 42 (1991), 76-96. · Zbl 0717.68031 · doi:10.1016/0022-0000(91)90040-C
[13] R. Beigel andJ. Gill, Counting classes: Thresholds, parity, mods, and fewness.Theoret. Comput. Sci. 103 (1992), 3-23. · Zbl 0760.68028 · doi:10.1016/0304-3975(92)90084-S
[14] R. Beigel and J. Tarui, On ACC. InProc. 32nd Ann. IEEE Symp. Found. Comput. Sci., 1991, 783-792. Revised version in this volume.
[15] J. Cai andL. Hemachandra, On the power of parity polynomial time.Math. Systems Theory 23 (1990), 95-106. · Zbl 0718.68038 · doi:10.1007/BF02090768
[16] M. Furst, J. B. Saxe, andM. Sipser, Parity, circuits, and the polynomial-time hierarchy.Math. Systems Theory 17 (1984) 13-27. · Zbl 0534.94008 · doi:10.1007/BF01744431
[17] L. Goldschlager andI. Parberry, On the construction of parallel computers from various bases of Boolean functions.Theoret. Comput. Sci. 43 (1986), 43-58. · Zbl 0604.68054 · doi:10.1016/0304-3975(86)90165-9
[18] V. Grolmusz,On the Weak Mod-m Degree of the GIP Function. Draft, Eötvös University, April 1994.
[19] U. Hertrampf, Relations among MOD-classes.Theoret. Comput. Sci. 74 (1990), 325-328. · Zbl 0701.68029 · doi:10.1016/0304-3975(90)90081-R
[20] M. Krause and S. Waack, Variation ranks of communication matrices and lower bounds for depth two circuits having symmetric gates with unbounded fan-in. InProc. 32nd Ann. IEEE Symp. Found. Comput. Sci., 1991, 777-782.
[21] P. McKenzie, P. Péladeau andD. Thérien,NC 1: the automata-theoretic viewpoint.Comput. Complexity 1 (1991), 330-359. · Zbl 0774.68048 · doi:10.1007/BF01212963
[22] M. L. Minsky andS. A. Papert,Perceptrons. MIT Press, Cambridge, MA, 1988. Expanded Edition. The first edition appeared in 1968.
[23] C. Papadimitriou andS. Zachos, Two remarks on the power of counting.Proc. Sixth GI Conf. Theoret. Comp. Sci., Lecture Notes in Computer Science 145, Springer-Verlag, Berlin, 1983, 269-276.
[24] A. A. Razborov, Lower bounds for the size of circuits of bounded depth with basis {?,?}.Math. Notes of the Academy of Science of the USSR 41 (1987), 333-338. · Zbl 0632.94030 · doi:10.1007/BF01137685
[25] R. Smolensky, Algebraic methods in the theory of lower bounds for Boolean circuit complexity. InProc. Nineteenth Ann. ACM Symp. Theor. Comput., 1987, 77-82.
[26] R. Smolensky, On interpretation by analytic functions with special properties and some weak lower bounds on the size of circuits with symmetric gates. InProc. 31st Ann. IEEE Symp. Found. Comput. Sci., 1990, 628-631.
[27] M. Szegedy,Algebraic Methods in Lower Bounds for Computational Models with Limited Communication. Ph.D. thesis, University of Chicago, Dec. 1989.
[28] G. Tardos and D. A. M. Barrington,A Lower Bound on the Mod 6 Degree of the OR Function. Draft, U. of Massachusetts, April 1994. · Zbl 0936.68051
[29] J. Tarui, Probabilistic polynomials, AC0 functions, and the polynomial-time hierarchy.Theoret. Comput. Sci. 113 (1993), 167-183. · Zbl 0783.68047 · doi:10.1016/0304-3975(93)90214-E
[30] D. Thérien, Circuits of MODm gates cannot compute AND in sublinear size. InProc. LATIN ’92 (First Latin American Symposium on Theoretical Computer Science), 1992. Revised version in this volume.
[31] S. Toda andM. Ogiwara, Counting classes are at least as hard as the polynomial-time hierarchy.SIAM J. Comput. 21 (1992), 316-328. · Zbl 0755.68055 · doi:10.1137/0221023
[32] S.-C. Tsai, Lower bounds on representing Boolean functions as polynomials inZ m . InProc. Structure in Complexity Theory: Eighth Ann. Conference, 1993, 96-101.
[33] A. C.-C. Yao, On ACC and threshold circuits. InProc. 31st Ann. IEEE Symp. Found. Comput. Sci., 1990, 619-627.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.