×

Singularity formation for one dimensional full Euler equations. (English) Zbl 1348.76125

Summary: We investigate the basic open question on the global existence v.s. finite time blow-up phenomena of classical solutions for the one-dimensional compressible Euler equations of adiabatic flow. For isentropic flows, it is well-known that the solutions develop singularity if and only if initial data contain any compression (the Riemann variables have negative spatial derivative). The situation for non-isentropic flow is not quite clear so far, due to the presence of non-constant entropy. In [G. Chen et al, “Singularity formation for compressible Euler equations”, Preprint, arXiv:1408.6775], it is shown that initial weak compressions do not necessarily develop singularity in finite time, unless the compression is strong enough for general data. In this paper, we identify a class of solutions of the full (non-isentropic) Euler equations, developing singularity in finite time even though their initial data do not contain any compression. This is in sharp contrast to the isentropic flow.

MSC:

76N15 Gas dynamics (general theory)
35L65 Hyperbolic conservation laws
35L67 Shocks and singularities for hyperbolic equations
Full Text: DOI

References:

[1] Chemin, J., Remarques sur l’apparition de-singularités dans les ecoulements Euleriens compressibles, Comm. Math. Phys., 133, 323-329 (1990) · Zbl 0711.76076
[2] Chen, G., Formation of singularity and smooth wave propagation for the non-isentropic compressible Euler equations, J. Hyperbolic Differ. Equ., 8, 4, 671-690 (2011) · Zbl 1395.76036
[5] Chen, G.; Young, R.; Zhang, Q., Shock formation in the compressible Euler equations and related systems, J. Hyperbolic Differ. Equ., 10, 1, 149-172 (2013) · Zbl 1452.35137
[6] Christodoulou, D., The Formation of Shocks in 3-Dimensional Fluids, EMS Monographs in Mathematics (2007), European Mathematical Society (EMS): European Mathematical Society (EMS) Zürich · Zbl 1117.35001
[7] Christodoulou, D.; Miao, S., Compressible Flow and Euler’s Equations, Surveys of Modern Mathematics, vol. 9 (2014), International Press/Higher Education Press: International Press/Higher Education Press Somerville, MA/Beijing · Zbl 1329.76002
[8] Courant, R.; Friedrichs, K. O., Supersonic Flow and Shock Waves (1948), Wiley-Interscience: Wiley-Interscience New York · Zbl 0041.11302
[9] Dafermos, C., Hyperbolic Conservation Laws in Continuum Physics (2010), Springer-Verlag: Springer-Verlag Heidelberg · Zbl 1196.35001
[10] Grassin, M.; Serre, D., Global smooth solutions to Euler equations for an isentropic perfect gas, C. R. Acad. Sci. Paris Ser. I Math., 325, 721-726 (1997) · Zbl 0887.35125
[11] John, F., Formation of singularities in one-dimensional nonlinear wave propagation, Comm. Pure Appl. Math., 27, 377-405 (1974) · Zbl 0302.35064
[12] Lax, P., Development of singularities of solutions of nonlinear hyperbolic partial differential equations, J. Math. Phys., 5, 5, 611-614 (1964) · Zbl 0135.15101
[13] Li, T.; Wang, D., Blowup phenomena of solutions to the Euler equations for compressible fluid flow, J. Differential Equations, 221, 91-101 (2006) · Zbl 1083.76051
[14] Li, T.; Zhou, Y.; Kong, D., Weak linear degeneracy and global classical solutions for general quasilinear hyperbolic systems, Comm. Partial Differential Equations, 19, 7-8, 1263-1317 (1994) · Zbl 0810.35054
[15] Lin, L.; Liu, H.; Yang, T., Existence of globally bounded continuous solutions for nonisentropic gas dynamics equations, J. Math. Anal. Appl., 209, 492-506 (1997) · Zbl 0880.35096
[16] Lin, L.; Vong, S., A note on the existence and nonexistence of globally bounded classical solutions for nonisentropic gas dynamics, Acta Math. Sci., 26B, 537-540 (2006) · Zbl 1147.35333
[17] Liu, F., Global smooth resolvability for one-dimensional gas dynamics systems, Nonlinear Anal., 36, 25-34 (1999) · Zbl 0923.35123
[18] Liu, T., The development of singularities in the nonlinear waves for quasi-linear hyperbolic partial differential equations, J. Differential Equations, 33, 92-111 (1979) · Zbl 0379.35048
[19] Makino, T.; Ukai, S.; Kawashima, S., Sur la solution \(\overset{``}{\text{a}}\) support compact de equations d”Euler compressible, Jpn. J. Appl. Math., 33, 249-257 (1986) · Zbl 0637.76065
[20] Rammaha, M. A., Formation of singularities in compressible fluids in two-space dimensions, Proc. Amer. Math. Soc., 107, 3, 705-714 (1989) · Zbl 0692.35015
[21] Serre, D., Classical global solutions of the Euler equations for a compressible perfect fluid, Ann. Inst. Fourier, 47, 139-153 (1997) · Zbl 0864.35069
[22] Sideris, T., Formation of singularities in three-dimensional compressible fluids, Comm. Math. Phys., 101, 475-485 (1985) · Zbl 0606.76088
[23] Smoller, J., Shock Waves and Reaction-Diffusion Equations (1982), Springer-Verlag: Springer-Verlag New York
[25] Zheng, H., Singularity formation for the compressible Euler equations with general pressure law, J. Math. Anal. Appl., 438, 59-72 (2016) · Zbl 1334.35220
[26] Zhu, C., Global smooth solution of the nonisentropic gas dynamics system, Proc. Roy. Soc. Edinburgh Sect. A, 126, 768-775 (1996) · Zbl 0863.35084
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.