×

Numerical modeling and experimental validation of free surface flow problems. (English) Zbl 1348.76098

Summary: In this paper we present a summary of numerical methods for solving free surface and two fluid flow problems. We will focus the attention on level set formulations extensively used in the context of the finite element method. In particular, numerical developments to achieve accurate solutions are described. Specific topics of the algorithms, like mass preservation and interface redefinition, are evaluated. To illustrate these aspects, numerical strategies previously developed are applied to the solution of a sloshing and a water column collapse problems. To assess the capabilities of these techniques, the numerical results are compared against each other and with experimental data. Considering these aspects, the present work is aimed to outline some well reported aspects of level set-like formulations.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
76D05 Navier-Stokes equations for incompressible viscous fluids
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
Full Text: DOI

References:

[1] Adalsteinsson D, Sethian JA (1995) A fast level set method for propagating interfaces. J Comput Phys 118(2):269-277. doi:10.1006/jcph.1995.1098 · Zbl 0823.65137 · doi:10.1006/jcph.1995.1098
[2] Akin JE, Tezduyar TE, Ungor M (2007) Computation of flow problems with the mixed interface-tracking/interface-capturing technique (MITICT). Comput Fluids 36(1):2-11. doi:10.1016/j.compfluid.2005.07.008 · Zbl 1181.76105 · doi:10.1016/j.compfluid.2005.07.008
[3] Akkerman I, Bazilevs Y, Kees C, Farthing M (2011) Isogeometric analysis of free-surface flow. J Comput Phys 230(11):4137-4152. doi:10.1016/j.jcp.2010.11.044 · Zbl 1343.76040 · doi:10.1016/j.jcp.2010.11.044
[4] Aliabadi S, Tezduyar TE (2000) Stabilized-finite-element/interface-capturing technique for parallel computation of unsteady flows with interfaces. Comput Methods Appl Mech Eng 190(34):243-261. doi:10.1016/S0045-7825(00)00200-0 · Zbl 0994.76050 · doi:10.1016/S0045-7825(00)00200-0
[5] Aliabadi S, Johnson A, Zellars B, Abatan A, Berger C (2002) Parallel simulation of flows in open channels. Future Gener Comput Syst 18(5):627-637. doi:10.1016/S0167-739X(01)00062-0 · Zbl 1042.68123 · doi:10.1016/S0167-739X(01)00062-0
[6] Aliabadi S, Abedi J, Zellars B (2003) Parallel finite element simulation of mooring forces on floating objects. Int J Numer Methods Fluids 41(8):809-822. doi:10.1002/fld.459 · Zbl 1107.76344 · doi:10.1002/fld.459
[7] Amsden AA, Harlow FH (1970) The SMAC method: a numerical technique for calculating incompressible fluid flows. Technical report, Los Alamos National Laboratory
[8] Anderson DM, McFadden GB, Wheeler AA (1998) Diffuse-interface methods in fluid mechanics. Ann Rev Fluid Mech 30:139-165. doi:10.1146/annurev.fluid.30.1.139 · Zbl 1398.76051 · doi:10.1146/annurev.fluid.30.1.139
[9] Ashgriz N, Barbat T, Wang G (2004) A computational Lagrangian-Eulerian advection remap for free surface flows. Int J Numer Methods Fluids 44(1):1-32. doi:10.1002/fld.620 · Zbl 1062.76041 · doi:10.1002/fld.620
[10] Aulisa E, Manservisi S, Scardovelli R (2003) A mixed markers and volume-of-fluid method for the reconstruction and advection of interfaces in two-phase and free-boundary flows. J Comput Phys 188(2):611-639. doi:10.1016/S0021-9991(03)00196-7 · Zbl 1127.76346 · doi:10.1016/S0021-9991(03)00196-7
[11] Aulisa E, Manservisi S, Scardovelli R (2004) A surface marker algorithm coupled to an area-preserving marker redistribution method for three-dimensional interface tracking. J Comput Phys 197(2):555-584. doi:10.1016/j.jcp.2003.12.009 · Zbl 1079.76605 · doi:10.1016/j.jcp.2003.12.009
[12] Aulisa E, Manservisi S, Scardovelli R, Zaleski S (2007) Interface reconstruction with least-squares fit and split advection in three-dimensional cartesian geometry. J Comput Phys 225(2):2301-2319. doi:10.1016/j.jcp.2007.03.015 · Zbl 1118.76048 · doi:10.1016/j.jcp.2007.03.015
[13] Ausas RF, Sousa FS, Buscaglia GC (2010) An improved finite element space for discontinuous pressures. Comput Methods Appl Mech Eng 199(1720):1019-1031. doi:10.1016/j.cma.2009.11.011 · Zbl 1227.76025 · doi:10.1016/j.cma.2009.11.011
[14] Ausas RF, Dari EA, Buscaglia GC (2011) A geometric mass-preserving redistancing scheme for the level set function. Int J Numer Methods Fluids 65(8):989-1010. doi:10.1002/fld.2227 · Zbl 1444.76084 · doi:10.1002/fld.2227
[15] Ausas RF, Buscaglia GC, Idelsohn SR (2012) A new enrichment space for the treatment of discontinuous pressures in multi-fluid flows. Int J Numer Methods Fluids 70(7):829-850. doi:10.1002/fld.2713 · Zbl 1412.76059 · doi:10.1002/fld.2713
[16] Baer TA, Cairncross RA, Schunk PR, Rao RR, Sackinger PA (2000) A finite element method for free surface flows of incompressible fluids in three dimensions. Part II. Dynamic wetting lines. Int J Numer Methods Fluids 33(3):405-427. doi:10.1002/1097-0363(20000615)33:3<405:AID-FLD14>3.0.CO;2-4 · Zbl 0989.76044
[17] Baiges J, Codina R, Coppola-Owen H (2011) The fixed-mesh ALE approach for the numerical simulation of floating solids. Int J Numer Methods Fluids 67(8):1004-1023. doi:10.1002/fld.2403 · Zbl 1316.76067 · doi:10.1002/fld.2403
[18] Battaglia L, D’Elía J, Storti M, Nigro N (2006) Numerical simulation of transient free surface flows using a moving mesh technique. J Appl Mech 73(6):1017-1025. doi:10.1115/1.2198246 · Zbl 1111.74324 · doi:10.1115/1.2198246
[19] Battaglia L, Storti MA, D’Elía J (2010) Bounded renormalization with continuous penalization for level set interface-capturing methods. Int J Numer Methods Eng 84(7):830-848. doi:10.1002/nme.2925 · Zbl 1202.76105 · doi:10.1002/nme.2925
[20] Battaglia L, Storti MA, D’Elía J (2010) Simulation of free-surface flows by a finite element interface capturing technique. Int J Comput Fluid Dyn 24(3-4):121-133. doi:10.1080/10618562.2010.495695 · Zbl 1267.76057 · doi:10.1080/10618562.2010.495695
[21] Battaglia L, D’Elía J, Storti M (2012) Simulación numérica de la agitación en tanques de almacenamiento de líquidos mediante una estrategia lagrangiana euleriana arbitraria. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería 28(2):124-134. doi:10.1016/j.rimni.2012.02.001 · doi:10.1016/j.rimni.2012.02.001
[22] Battaglia L, Cruchaga MA, Storti MA, D’Elía J (2014) Simulación de flujos con superficie libre mediante una metodología de captura de interfase. In: Bertolino G, Cantero M, Storti M, Teruel F (eds) Mecánica computacional, vol XXXIII, pp 2161-2174
[23] Battaglia L, D’Ela J, Storti MA (2011) Computational fluid dynamics: theory, analysis and applications, chap. Numerical approaches for solving free surface fluid flows. Nova Science Publishers, pp 351-384. ISBN: 978-1-61209-276-8 · Zbl 0958.76070
[24] Behr M, Abraham F (2002) Free-surface flow simulations in the presence of inclined walls. Comput Methods Appl Mech Eng 191(47-48):5467-5483. doi:10.1016/S0045-7825(02)00444-9 · Zbl 1083.76549 · doi:10.1016/S0045-7825(02)00444-9
[25] Behr M (2004) On the application of slip boundary condition on curved boundaries. Int J Numer Methods Fluids 45(1):43-51. doi:10.1002/fld.663 · Zbl 1079.76576 · doi:10.1002/fld.663
[26] Biausser B, Fraunié P, Grilli S, Marcer R (2004) Numerical analysis of the internal kinematics and dynamics of 3-D breaking waves on slopes. Int J Offshore Polar Eng 14(4):247-256
[27] Biausser B, Guignard S, Marcer R, Frauni P (2004) 3D two phase flows numerical simulations by SL-VOF method. Int J Numer Methods Fluids 45(6):581-604. doi:10.1002/fld.708 · Zbl 1085.76548 · doi:10.1002/fld.708
[28] Bonet J, Lok TS (1999) Variational and momentum preservation aspects of smooth particle hydrodynamic formulations. Comput Methods Appl Mech Eng 180(1-2):97-115. doi:10.1016/S0045-7825(99)00051-1 · Zbl 0962.76075 · doi:10.1016/S0045-7825(99)00051-1
[29] Bonet J, Kulasegaram S, Rodriguez-Paz M, Profit M (2004) Variational formulation for the smooth particle hydrodynamics (SPH) simulation of fluid and solid problems. Comput Methods Appl Mech Eng 193(1214):1245-1256. doi:10.1016/j.cma.2003.12.018 · Zbl 1060.76637 · doi:10.1016/j.cma.2003.12.018
[30] Braess H, Wriggers P (2000) Arbitrary Lagrangian Eulerian finite element analysis of free surface flow. Comput Methods Appl Mech Eng 190(12):95-109. doi:10.1016/S0045-7825(99)00416-8 · Zbl 0967.76053 · doi:10.1016/S0045-7825(99)00416-8
[31] Brooks AN, Hughes TJ (1982) Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput Methods Appl Mech Eng 32(13):199-259. doi:10.1016/0045-7825(82)90071-8 · Zbl 0497.76041 · doi:10.1016/0045-7825(82)90071-8
[32] Caboussat A (2005) Numerical simulation of two-phase free surface flows. Arch Comput Methods Eng 12(2):165-224. doi:10.1007/BF03044518 · Zbl 1097.76047 · doi:10.1007/BF03044518
[33] Caboussat A, Picasso M, Rappaz J (2005) Numerical simulation of free surface incompressible liquid flows surrounded by compressible gas. J Comput Phys 203(2):626-649. doi:10.1016/j.jcp.2004.09.009 · Zbl 1143.76530 · doi:10.1016/j.jcp.2004.09.009
[34] Caboussat A, Clausen P, Rappaz J (2012) Numerical simulation of two-phase flow with interface tracking by adaptive Eulerian grid subdivision. Math Comput Model 55(3-4):490-504. doi:10.1016/j.mcm.2011.08.027 · Zbl 1255.76088 · doi:10.1016/j.mcm.2011.08.027
[35] Cairncross RA, Schunk PR, Baer TA, Rao RR, Sackinger PA (2000) A finite element method for free surface flows of incompressible fluids in three dimensions. Part I. Boundary fitted mesh motion. Int J Numer Methods Fluids 33(3):375-403. doi:10.1002/1097-0363(20000615)33:3<375:AID-FLD13>3.0.CO;2-O · Zbl 0989.76043
[36] Carrica PM, Wilson RV, Stern F (2006) Unsteady RANS simulation of the ship forward speed diffraction problem. Comput Fluids 35(6):545-570. doi:10.1016/j.compfluid.2005.08.001 · Zbl 1160.76339 · doi:10.1016/j.compfluid.2005.08.001
[37] Carrica PM, Wilson RV, Noack RW, Stern F (2007) Ship motions using single-phase level set with dynamic overset grids. Comput Fluids 36(9):1415-1433. doi:10.1016/j.compfluid.2007.01.007 · Zbl 1194.76197 · doi:10.1016/j.compfluid.2007.01.007
[38] Carrica PM, Wilson RV, Stern F (2007) An unsteady single-phase level set method for viscous free surface flows. Int J Numer Methods Fluids 53(2):229-256. doi:10.1002/fld.1279 · Zbl 1227.76049 · doi:10.1002/fld.1279
[39] Carrica PM, Sadat-Hosseini H, Stern F (2012) CFD analysis of broaching for a model surface combatant with explicit simulation of moving rudders and rotating propellers. Comput Fluids 53:117-132. doi:10.1016/j.compfluid.2011.10.002 · Zbl 1271.76050 · doi:10.1016/j.compfluid.2011.10.002
[40] Castiglione T, Stern F, Bova S, Kandasamy M (2011) Numerical investigation of the seakeeping behavior of a catamaran advancing in regular head waves. Ocean Eng 38(16):1806-1822. doi:10.1016/j.oceaneng.2011.09.003 · doi:10.1016/j.oceaneng.2011.09.003
[41] Cervone A, Manservisi S, Scardovelli R (2010) Simulation of axisymmetric jets with a finite element Navier-Stokes solver and a multilevel VOF approach. J Comput Phys 229(19):6853-6873. doi:10.1016/j.jcp.2010.05.025 · Zbl 1425.76075 · doi:10.1016/j.jcp.2010.05.025
[42] Cervone A, Manservisi S, Scardovelli R (2011) An optimal constrained approach for divergence-free velocity interpolation and multilevel VOF method. Comput Fluids 47(1):101-114 · Zbl 1271.76125
[43] Chessa J, Belytschko T (2003) An enriched finite element method and level sets for axisymmetric two-phase flow with surface tension. Int J Numer Methods Eng 58(13):2041-2064. doi:10.1002/nme.946 · Zbl 1032.76591 · doi:10.1002/nme.946
[44] Chessa J, Belytschko T (2003) An extended finite element method for two-phase fluids. J Appl Mech 70(1):10-17. doi:10.1115/1.1526599 · Zbl 1110.74391 · doi:10.1115/1.1526599
[45] Chippada S, Jue TC, Joo SW, Wheeler MF, Ramaswamy B (1996) Numerical simulation of free-boundary problems. Int J Comput Fluid Dyn 7(1-2):91-118. doi:10.1080/10618569608940754 · Zbl 0882.76041 · doi:10.1080/10618569608940754
[46] Codina R, Soto O (2002) A numerical model to track two-fluid interfaces based on a stabilized finite element method and the level set technique. Int J Numer Methods Fluids 40(1-2):293-301. doi:10.1002/fld.277 · Zbl 1010.76053 · doi:10.1002/fld.277
[47] Codina R, Houzeaux G, Coppola-Owen H, Baiges J (2009) The fixed-mesh ALE approach for the numerical approximation of flows in moving domains. J Comput Phys 228(5):1591-1611. doi:10.1016/j.jcp.2008.11.004 · Zbl 1409.76100 · doi:10.1016/j.jcp.2008.11.004
[48] Compère G, Marchandise E, Remacle JF (2008) Transient adaptivity applied to two-phase incompressible flows. J Comput Phys 227(3):1923-1942. doi:10.1016/j.jcp.2007.10.002 · Zbl 1135.76031 · doi:10.1016/j.jcp.2007.10.002
[49] Coppola-Owen AH, Codina R (2005) Improving Eulerian two-phase flow finite element approximation with discontinuous gradient pressure shape functions. Int J Numer Methods Fluids 49(12):1287-1304. doi:10.1002/fld.963 · Zbl 1080.76036 · doi:10.1002/fld.963
[50] Coppola-Owen AH, Codina R (2007) A finite element model for free surface flows on fixed meshes. Int J Numer Methods Fluids 54(10):1151-1171. doi:10.1002/fld.1412 · Zbl 1116.76052 · doi:10.1002/fld.1412
[51] Coppola-Owen H, Codina R (2011) A free surface finite element model for low Froude number mould filling problems on fixed meshes. Int J Numer Methods Fluids 66(7):833-851. doi:10.1002/fld.2286 · Zbl 1452.76084 · doi:10.1002/fld.2286
[52] Corsini A, Rispoli F, Santoriello A, Tezduyar T (2006) Improved discontinuity-capturing finite element techniques for reaction effects in turbulence computation. Comput Mech 38(4-5):356-364. doi:10.1007/s00466-006-0045-x · Zbl 1177.76192 · doi:10.1007/s00466-006-0045-x
[53] Corsini A, Rispoli F, Sheard A, Tezduyar T (2012) Computational analysis of noise reduction devices in axial fans with stabilized finite element formulations. Comput Mech 50(6):695-705. doi:10.1007/s00466-012-0789-4 · Zbl 1311.76121 · doi:10.1007/s00466-012-0789-4
[54] Cruchaga M, Oñate E, Idelsohn S (1995) On the pseudomaterial approach for the analysis of transient forming processes. Commun Numer Methods Eng 11(2):137-148. doi:10.1002/cnm.1640110207 · Zbl 0818.76039 · doi:10.1002/cnm.1640110207
[55] Cruchaga MA, Oñate E (1997) A finite element formulation for incompressible flow problems using a generalized streamline operator. Comput Methods Appl Mech Eng 143(12):49-67. doi:10.1016/S0045-7825(97)84579-3 · Zbl 0898.76055 · doi:10.1016/S0045-7825(97)84579-3
[56] Cruchaga MA, Oñate E (1999) A generalized streamline finite element approach for the analysis of incompressible flow problems including moving surfaces. Comput Methods Appl Mech Eng 173(12):241-255. doi:10.1016/S0045-7825(98)00272-2 · Zbl 0959.76041 · doi:10.1016/S0045-7825(98)00272-2
[57] Cruchaga M, Celentano D, Tezduyar T (2001) A moving Lagrangian interface technique for flow computations over fixed meshes. Comput Methods Appl Mech Eng 191(67):525-543. doi:10.1016/S0045-7825(01)00300-0 · Zbl 0992.76052 · doi:10.1016/S0045-7825(01)00300-0
[58] Cruchaga M, Celentano D, Tezduyar T (2002) Computation of mould filling processes with a moving lagrangian interface technique. Commun Numer Methods Eng 18(7):483-493. doi:10.1002/cnm.506 · Zbl 1034.76031 · doi:10.1002/cnm.506
[59] Cruchaga MA, Celentano DJ, Tezduyar TE (2005) Moving-interface computations with the edge-tracked interface locator technique (ETILT). Int J Numer Methods Fluids 47(6-7):451-469. doi:10.1002/fld.825 · Zbl 1134.76382 · doi:10.1002/fld.825
[60] Cruchaga M, Celentano D, Breitkopf P, Villon P, Rassineux A (2006) A front remeshing technique for a Lagrangian description of moving interfaces in two-fluid flows. Int J Numer Methods Eng 66(13):2035-2063. doi:10.1002/nme.1616 · Zbl 1110.76323 · doi:10.1002/nme.1616
[61] Cruchaga MA, Celentano DJ, Tezduyar TE (2007) Collapse of a liquid column: numerical simulation and experimental validation. Comput Mech 39(4):453-476. doi:10.1007/s00466-006-0043-z · Zbl 1160.76013 · doi:10.1007/s00466-006-0043-z
[62] Cruchaga MA, Celentano DJ, Tezduyar TE (2007) A numerical model based on the mixed interface-tracking/interface-capturing technique (MITICT) for flows with fluidsolid and fluidfluid interfaces. Int J Numer Methods Fluids 54(6-8):1021-1030. doi:10.1002/fld.1498 · Zbl 1128.76033 · doi:10.1002/fld.1498
[63] Cruchaga MA, Celentano DJ, Tezduyar TE (2009) Computational modeling of the collapse of a liquid column over an obstacle and experimental validation. J Appl Mech Trans ASME 76(2):021202-021206. doi:10.1115/1.3057439 · doi:10.1115/1.3057439
[64] Cruchaga M, Celentano D, Breitkopf P, Villon P, Rassineux A (2010) A surface remeshing technique for a Lagrangian description of 3D two-fluid flow problems. Int J Numer Methods Fluids 63(4):415-430. doi:10.1002/fld.2073 · Zbl 1423.76334 · doi:10.1002/fld.2073
[65] Cruchaga MA, Reinoso RS, Storti MA, Celentano DJ, Tezduyar TE (2013) Finite element computation and experimental validation of sloshing in rectangular tanks. Comput Mech 52(6):1301-1312. doi:10.1007/s00466-013-0877-0 · doi:10.1007/s00466-013-0877-0
[66] Desjardins O, Moureau V, Pitsch H (2008) An accurate conservative level set/ghost fluid method for simulating turbulent atomization. J Comput Phys 227(18):8395-8416. doi:10.1016/j.jcp.2008.05.027 · Zbl 1256.76051 · doi:10.1016/j.jcp.2008.05.027
[67] de Sousa F, Mangiavacchi N, Nonato L, Castelo A, Tomé M, Ferreira V, Cuminato J, McKee S (2004) A front-tracking/front-capturing method for the simulation of 3D multi-fluid flows with free surfaces. J Comput Phys 198(2):469-499. doi:10.1016/j.jcp.2004.01.032 · Zbl 1116.76412 · doi:10.1016/j.jcp.2004.01.032
[68] Dettmer W, Perić D (2006) A computational framework for free surface fluid flows accounting for surface tension. Comput Methods Appl Mech Eng 195(23-24):3038-3071. doi:10.1016/j.cma.2004.07.057 · Zbl 1115.76043 · doi:10.1016/j.cma.2004.07.057
[69] Di Mascio A, Broglia R, Muscari R (2007) On the application of the single-phase level set method to naval hydrodynamic flows. Comput Fluids 36(5):868-886. doi:10.1016/j.compfluid.2006.08.001 · Zbl 1194.76201 · doi:10.1016/j.compfluid.2006.08.001
[70] Di Pietro DA, Lo Forte S, Parolini N (2006) Mass preserving finite element implementations of the level set method. Appl Numer Math 56(9):1179-1195. doi:10.1016/j.apnum.2006.03.003 · Zbl 1126.65089 · doi:10.1016/j.apnum.2006.03.003
[71] Dumbser M (2011) A simple two-phase method for the simulation of complex free surface flows. Comput Methods Appl Mech Eng 200(9-12):1204-1219. doi:10.1016/j.cma.2010.10.011 · Zbl 1225.76210 · doi:10.1016/j.cma.2010.10.011
[72] Dumbser M (2013) A diffuse interface method for complex three-dimensional free surface flows. Comput Methods Appl Mech Eng 257:47-64. doi:10.1016/j.cma.2013.01.006 · Zbl 1286.76099 · doi:10.1016/j.cma.2013.01.006
[73] Elgeti S, Sauerland H, Pauli L, Behr M (2012) On the usage of NURBS as interface representation in free-surface flows. Int J Numer Methods Fluids 69(1):73-87. doi:10.1002/fld.2537 · Zbl 1426.76254 · doi:10.1002/fld.2537
[74] Elias RN, Coutinho ALGA (2007) Stabilized edge-based finite element simulation of free-surface flows. Int J Numer Methods Fluids 54(6-8):965-993. doi:10.1002/fld.1475 · Zbl 1258.76111 · doi:10.1002/fld.1475
[75] Elias RN, Martins MAD, Coutinho ALGA (2007) Simple finite element-based computation of distance functions in unstructured grids. Int J Numer Methods Eng 72(9):1095-1110. doi:10.1002/nme.2079 · Zbl 1194.65145 · doi:10.1002/nme.2079
[76] Enright D, Fedkiw R, Ferziger J, Mitchell I (2002) A hybrid particle level set method for improved interface capturing. J Comput Phys 183(1):83-116. doi:10.1006/jcph.2002.7166 · Zbl 1021.76044 · doi:10.1006/jcph.2002.7166
[77] Enright D, Losasso F, Fedkiw R (2005) A fast and accurate semi-Lagrangian particle level set method. Comput Struct 83(67):479-490. doi:10.1016/j.compstruc.2004.04.024 · doi:10.1016/j.compstruc.2004.04.024
[78] Faltinsen OM, Timokha AN (2010) A multimodal method for liquid sloshing in a two-dimensional circular tank. J Fluid Mech 665:457-479. doi:10.1017/S002211201000412X · Zbl 1225.76048 · doi:10.1017/S002211201000412X
[79] Farhat C, Geuzaine P (2004) Design and analysis of robust ALE time-integrators for the solution of unsteady flow problems on moving grids. Comput Methods Appl Mech Eng 193(3941):4073-4095. doi:10.1016/j.cma.2003.09.027 · Zbl 1068.76063 · doi:10.1016/j.cma.2003.09.027
[80] Fedkiw RP, Aslam T, Merriman B, Osher S (1999) A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method). J Comput Phys 152(2):457-492. doi:10.1006/jcph.1999.6236 · Zbl 0957.76052 · doi:10.1006/jcph.1999.6236
[81] Feldman J, Bonet J (2007) Dynamic refinement and boundary contact forces in sph with applications in fluid flow problems. Int J Numer Methods Eng 72(3):295-324. doi:10.1002/nme.2010 · Zbl 1194.76229 · doi:10.1002/nme.2010
[82] Feng Y, Perić D (2000) A time-adaptive space-time finite element method for incompressible Lagrangian flows with free surfaces: computational issues. Comput Methods Appl Mech Eng 190(57):499-518. doi:10.1016/S0045-7825(99)00425-9 · Zbl 0995.76046 · doi:10.1016/S0045-7825(99)00425-9
[83] Feng YT, Perić D (2003) A spatially adaptive linear space-time finite element solution procedure for incompressible flows with moving domains. Int J Numer Methods Fluids 43(9):1099-1106. doi:10.1002/fld.546 · Zbl 1032.76593 · doi:10.1002/fld.546
[84] Fries TP (2009) The intrinsic XFEM for two-fluid flows. Int J Numer Methods Fluids 60(4):437-471. doi:10.1002/fld.1901 · Zbl 1161.76026 · doi:10.1002/fld.1901
[85] Fuster D, Agbaglah G, Josserand C, Popinet S, Zaleski S (2009) Numerical simulation of droplets, bubbles and waves: state of the art. Fluid Dyn Res 41(6):065,001. doi:10.1088/0169-5983/41/6/065001 · Zbl 1423.76002 · doi:10.1088/0169-5983/41/6/065001
[86] Galaktionov OS, Anderson PD, Peters GWM, Van de Vosse FN (2000) An adaptive front tracking technique for three-dimensional transient flows. Int J Numer Methods Fluids 32(2):201-217. doi:10.1002/(SICI)1097-0363(20000130)32:2<201:AID-FLD934>3.0.CO;2-D · Zbl 0966.76068
[87] Ganesan S, Matthies G, Tobiska L (2007) On spurious velocities in incompressible flow problems with interfaces. Comput Methods Appl Mech Eng 196(7):1193-1202. doi:10.1016/j.cma.2006.08.018 · Zbl 1173.76338 · doi:10.1016/j.cma.2006.08.018
[88] Garcia-Espinosa J, Valls A, Oñate E (2008) ODDLS: A new unstructured mesh finite element method for the analysis of free surface flow problems. Int J Numer Methods Eng 76(9):1297-1327. doi:10.1002/nme.2348 · Zbl 1195.76253 · doi:10.1002/nme.2348
[89] Geuzaine P, Grandmont C, Farhat C (2003) Design and analysis of ALE schemes with provable second-order time-accuracy for inviscid and viscous flow simulations. J Comput Phys 191(1):206-227. doi:10.1016/S0021-9991(03)00311-5 · Zbl 1051.76038 · doi:10.1016/S0021-9991(03)00311-5
[90] Gois JP, Nakano A, Nonato LG, Buscaglia GC (2008) Front tracking with moving-least-squares surfaces. J Comput Phys 227(22):9643-9669. doi:10.1016/j.jcp.2008.07.013 · Zbl 1153.65017 · doi:10.1016/j.jcp.2008.07.013
[91] González D, Cueto E, Chinesta F, Doblaré M (2007) A natural element updated Lagrangian strategy for free-surface fluid dynamics. J Comput Phys 223(1):127-150. doi:10.1016/j.jcp.2006.09.002 · Zbl 1108.76053 · doi:10.1016/j.jcp.2006.09.002
[92] Greaves D (2004) Simulation of interface and free surface flows in a viscous fluid using adapting quadtree grids. Int J Numer Methods Fluids 44(10):1093-1117. doi:10.1002/fld.687 · Zbl 1085.76549 · doi:10.1002/fld.687
[93] Greaves DM (2006) Simulation of viscous water column collapse using adapting hierarchical grids. Int J Numer Methods Fluids 50(6):693-711. doi:10.1002/fld.1073 · Zbl 1086.76047 · doi:10.1002/fld.1073
[94] Groß S, Reusken A (2007) An extended pressure finite element space for two-phase incompressible flows with surface tension. J Comput Phys 224(1):40-58. doi:10.1016/j.jcp.2006.12.021 · Zbl 1261.76015 · doi:10.1016/j.jcp.2006.12.021
[95] Gueyffier D, Li J, Nadim A, Scardovelli R, Zaleski S (1999) Volume-of-Fluid interface tracking with smoothed surface stress methods for three-dimensional flows. J Comput Phys 152(2):423-456. doi:10.1006/jcph.1998.6168 · Zbl 0954.76063 · doi:10.1006/jcph.1998.6168
[96] Guignard S, Marcer R, Rey V, Kharif C, Frauni P (2001) Solitary wave breaking on sloping beaches: 2-D two phase flow numerical simulation by SL-VOF method. Eur J Mech B Fluids 20(1):57-74. doi:10.1016/S0997-7546(00)01104-3 · Zbl 0983.76059 · doi:10.1016/S0997-7546(00)01104-3
[97] Güler I, Behr M, Tezduyar T (1999) Parallel finite element computation of free-surface flows. Comput Mech 23(2):117-123. doi:10.1007/s004660050391 · Zbl 0948.76039 · doi:10.1007/s004660050391
[98] Haagh GAAV, Van De Vosse FN (1998) Simulation of three-dimensional polymer mould filling processes using a pseudo-concentration method. Int J Numer Methods Fluids 28(9):1355-1369. doi:10.1002/(SICI)1097-0363(19981215)28:9<1355:AID-FLD770>3.0.CO;2-C · Zbl 0947.76051
[99] Harlow FH, Welch JE (1965) Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys Fluids 8(12):2182-2189. doi:10.1063/1.1761178 · Zbl 1180.76043 · doi:10.1063/1.1761178
[100] Hartmann D, Meinke M, Schrder W (2010) The constrained reinitialization equation for level set methods. J Comput Phys 229(5):1514-1535. doi:10.1016/j.jcp.2009.10.042 · Zbl 1329.76259 · doi:10.1016/j.jcp.2009.10.042
[101] Hernández J, López J, Gómez P, Zanzi C, Faura F (2008) A new volume of fluid method in three dimensions—Part I: multidimensional advection method with face-matched flux polyhedra. Int J Numer Methods Fluids 58(8):897-921. doi:10.1002/fld.1776 · Zbl 1151.76552 · doi:10.1002/fld.1776
[102] Herrmann M (2008) A balanced force refined level set grid method for two-phase flows on unstructured flow solver grids. J Comput Phys 227(4):2674-2706. doi:10.1016/j.jcp.2007.11.002 · Zbl 1388.76252 · doi:10.1016/j.jcp.2007.11.002
[103] Hieber SE, Koumoutsakos P (2005) A Lagrangian particle level set method. J Comput Phys 210(1):342-367. doi:10.1016/j.jcp.2005.04.013 · Zbl 1076.65087 · doi:10.1016/j.jcp.2005.04.013
[104] Hirt CW, Nichols BD (1981) Volume of fluid (VOF) method for the dynamics of free boundaries. J Comput Phys 39(1):201-225. doi:10.1016/0021-9991(81)90145-5 · Zbl 0462.76020 · doi:10.1016/0021-9991(81)90145-5
[105] Huang J, Carrica PM, Stern F (2007) Coupled ghost fluid/two-phase level set method for curvilinear body-fitted grids. Int J Numer Methods Fluids 55(9):867-897. doi:10.1002/fld.1499 · Zbl 1388.76253 · doi:10.1002/fld.1499
[106] Huang J, Carrica PM, Stern F (2008) Semi-coupled air/water immersed boundary approach for curvilinear dynamic overset grids with application to ship hydrodynamics. Int J Numer Methods Fluids 58(6):591-624. doi:10.1002/fld.1758 · Zbl 1283.76052 · doi:10.1002/fld.1758
[107] Huerta A, Liu WK (1988) Viscous flow with large free surface motion. Comput Methods Appl Mech Eng 69(3):277-324. doi:10.1016/0045-7825(88)90044-8 · Zbl 0655.76032 · doi:10.1016/0045-7825(88)90044-8
[108] Hughes TJ, Liu WK, Zimmermann TK (1981) Lagrangian-Eulerian finite element formulation for incompressible viscous flows. Comput Methods Appl Mech Eng 29(3):329-349. doi:10.1016/0045-7825(81)90049-9 · Zbl 0482.76039 · doi:10.1016/0045-7825(81)90049-9
[109] Hughes T, Tezduyar T (1984) Finite element methods for first-order hyperbolic systems with particular emphasis on the compressible Euler equations. Comput Methods Appl Mech Eng 45(1-3):217-284. doi:10.1016/0045-7825(84)90157-9 · Zbl 0542.76093 · doi:10.1016/0045-7825(84)90157-9
[110] Ianniello S, Mascio AD (2010) A self-adaptive oriented particles level-set method for tracking interfaces. J Comput Phys 229(4):1353-1380. doi:10.1016/j.jcp.2009.10.034 · Zbl 1329.65244 · doi:10.1016/j.jcp.2009.10.034
[111] Idelsohn SR, Storti MA, Oñate E (2001) Lagrangian formulations to solve free surface incompressible inviscid fluid flows. Comput Methods Appl Mech Eng 191(67):583-593. doi:10.1016/S0045-7825(01)00303-6 · Zbl 0999.76107 · doi:10.1016/S0045-7825(01)00303-6
[112] Idelsohn S, Oñate E, Del Pin F (2004) The particle finite element method: a powerful tool to solve incompressible flows with free-surfaces and breaking waves. Int J Numer Methods Eng 61(7):964-989. doi:10.1002/nme.1096 · Zbl 1075.76576 · doi:10.1002/nme.1096
[113] Jacobsen NG, Fuhrman DR, Fredse J (2012) A wave generation toolbox for the open-source CFD library: openfoam. Int J Numer Methods Fluids 70(9):1073-1088. doi:10.1002/fld.2726 · Zbl 1412.76004 · doi:10.1002/fld.2726
[114] Jahanbakhsh E, Panahi R, Seif M (2007) Numerical simulation of three-dimensional interfacial flows. Int J Numer Methods Heat Fluid Flow 17(4):384-404. doi:10.1108/09615530710739167 · Zbl 1231.76209 · doi:10.1108/09615530710739167
[115] Jeong JH, Yang DY (2004) Finite element analysis of filling stage in die-casting process using marker surface method and adaptive grid refinement technique. Int J Numer Methods Fluids 44(2):209-230. doi:10.1002/fld.637 · Zbl 1085.76523 · doi:10.1002/fld.637
[116] Jiang G, Peng D (2000) Weighted ENO schemes for Hamilton-Jacobi equations. SIAM J Sci Comput 21(6):2126-2143. doi:10.1137/S106482759732455X · Zbl 0957.35014 · doi:10.1137/S106482759732455X
[117] Johnson A, Tezduyar T (1994) Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces. Comput Methods Appl Mech Eng 119(12):73-94. doi:10.1016/0045-7825(94)00077-8 · Zbl 0848.76036 · doi:10.1016/0045-7825(94)00077-8
[118] Kees C, Akkerman I, Farthing M, Bazilevs Y (2011) A conservative level set method suitable for variable-order approximations and unstructured meshes. J Comput Phys 230(12):4536-4558. doi:10.1016/j.jcp.2011.02.030 · Zbl 1416.76214 · doi:10.1016/j.jcp.2011.02.030
[119] Kim MS, Lee WI (2003) A new VOF-based numerical scheme for the simulation of fluid flow with free surface. Part I: new free surface-tracking algorithm and its verification. Int J Numer Methods Fluids 42(7):765-790. doi:10.1002/fld.553 · Zbl 1143.76536 · doi:10.1002/fld.553
[120] Kim MS, Park JS, Lee WI (2003) A new VOF-based numerical scheme for the simulation of fluid flow with free surface. Part II: application to the cavity filling and sloshing problems. Int J Numer Methods Fluids 42(7):791-812. doi:10.1002/fld.554 · Zbl 1143.76537 · doi:10.1002/fld.554
[121] Kleefsman K, Fekken G, Veldman A, Iwanowski B, Buchner B (2005) A volume-of-fluid based simulation method for wave impact problems. J Comput Phys 206(1):363-393. doi:10.1016/j.jcp.2004.12.007 · Zbl 1087.76539 · doi:10.1016/j.jcp.2004.12.007
[122] Kohno H, Tanahashi T (2004) Numerical analysis of moving interfaces using a level set method coupled with adaptive mesh refinement. Int J Numer Methods Fluids 45(9):921-944. doi:10.1002/fld.715 · Zbl 1085.76056 · doi:10.1002/fld.715
[123] Koshizuka S, Oka Y (1996) Moving-particle semi-implicit method for fragmentation of incompressible fluid. Nucl Sci Eng 123:421-434
[124] Kurioka S, Dowling DR (2009) Numerical simulation of free surface flows with the level set method using an extremely high-order accuracy WENO advection scheme. Int J Comput Fluid Dyn 23(3):233-243. doi:10.1080/10618560902776786 · Zbl 1184.76652 · doi:10.1080/10618560902776786
[125] Kuzmin D (2014) An optimization-based approach to enforcing mass conservation in level set methods. J Comput Appl Math 258:78-86. doi:10.1016/j.cam.2013.09.009 · Zbl 1294.65067 · doi:10.1016/j.cam.2013.09.009
[126] Labeur RJ, Wells GN (2009) Interface stabilised finite element method for moving domains and free surface flows. Comput Methods Appl Mech Eng 198(58):615-630. doi:10.1016/j.cma.2008.09.014 · Zbl 1229.76050 · doi:10.1016/j.cma.2008.09.014
[127] Le Chenadec V, Pitsch H (2013) A 3D unsplit forward/backward volume-of-fluid approach and coupling to the level set method. J Comput Phys 233(1):10-33. doi:10.1016/j.jcp.2012.07.019 · Zbl 1286.76104 · doi:10.1016/j.jcp.2012.07.019
[128] LeVeque R (1996) High-resolution conservative algorithms for advection in incompressible flow. SIAM J Numer Anal 33(2):627-665. doi:10.1137/0733033 · Zbl 0852.76057 · doi:10.1137/0733033
[129] Lewis RW, Usmani AS, Cross J (1995) Efficient mould filling simulation in castings by an explicit finite element method. Int J Numer Methods Fluids 20(6):493-506. doi:10.1002/fld.1650200606 · Zbl 0845.76046 · doi:10.1002/fld.1650200606
[130] Lewis RW, Postek EW, Han Z, Gethin DT (2006) A finite element model of the squeeze casting process. Int J Numer Methods Heat Fluid Flow 16(5):539-572. doi:10.1108/09615530610669102 · Zbl 1121.76352 · doi:10.1108/09615530610669102
[131] Lewis R, Ravindran K (2000) Finite element simulation of metal casting. Int J Numer Methods Eng 47(1-3):29-59. doi:10.1002/(SICI)1097-0207(20000110/30)47:1/3<29:AID-NME760>3.0.CO;2-X · Zbl 0962.76052
[132] Li Z, Jaberi FA, Shih TIP (2008) A hybrid Lagrangian-Eulerian particle-level set method for numerical simulations of two-fluid turbulent flows. Int J Numer Methods Fluids 56(12):2271-2300. doi:10.1002/fld.1621 · Zbl 1388.76303 · doi:10.1002/fld.1621
[133] Liu M, Liu G (2010) Smoothed particle hydrodynamics (SPH): an overview and recent developments. Arch Comput Methods Eng 17(1):25-76. doi:10.1007/s11831-010-9040-7 · Zbl 1348.76117 · doi:10.1007/s11831-010-9040-7
[134] Löhner R, Yang C, Oñate E (2006) On the simulation of flows with violent free surface motion. Comput Methods Appl Mech Eng 195(41-43):5597-5620. doi:10.1016/j.cma.2005.11.010 · Zbl 1122.76070 · doi:10.1016/j.cma.2005.11.010
[135] Löhner R, Appanaboyina S, Cebral JR (2008) Comparison of body-fitted, embedded and immersed solutions of low Reynolds-number 3-D incompressible flows. Int J Numer Methods Fluids 57(1):13-30. doi:10.1002/fld.1604 · Zbl 1135.76034 · doi:10.1002/fld.1604
[136] Löhner R, Baum J, Charman C, Pelessone D (2003) Fluid-structure interaction simulations using parallel computers. In: Palma J, Sousa A, Dongarra J, Hernndez V (eds) High performance computing for computational science VECPAR 2002, Lecture notes in computer science, vol 2565. Springer, Berlin, pp 3-23. doi:10.1007/3-540-36569-9_1 · Zbl 1153.76385
[137] Löhner R, Camelli F, Baum J, Togashi F, Soto O (2001) Advances in FEFLO. In: 51st AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition. American Institute of Aeronautics and Astronautics. doi:10.2514/6.2013-373 · Zbl 1085.76549
[138] López J, Hernández J, Gómez P, Faura F (2004) A volume of fluid method based on multidimensional advection and spline interface reconstruction. J Comput Phys 195(2):718-742. doi:10.1016/j.jcp.2003.10.030 · Zbl 1115.76358 · doi:10.1016/j.jcp.2003.10.030
[139] López J, Hernández J, Gómez P, Faura F (2005) An improved PLIC-VOF method for tracking thin fluid structures in incompressible two-phase flows. J Comput Phys 208(1):51-74. doi:10.1016/j.jcp.2005.01.031 · Zbl 1115.76359 · doi:10.1016/j.jcp.2005.01.031
[140] López EJ, Nigro NM, Storti MA, Toth JA (2007) A minimal element distortion strategy for computational mesh dynamics. Int J Numer Methods Eng 69(9):1898-1929. doi:10.1002/nme.1838 · Zbl 1194.76127 · doi:10.1002/nme.1838
[141] López EJ, Nigro NM, Storti MA (2008) Simultaneous untangling and smoothing of moving grids. Int J Numer Methods Eng 76(7):994-1019. doi:10.1002/nme.2347 · Zbl 1195.74312 · doi:10.1002/nme.2347
[142] López J, Zanzi C, Gómez P, Faura F, Hernández J (2008) A new volume of fluid method in three dimensions—Part II: piecewise-planar interface reconstruction with cubic-Bézier fit. Int J Numer Methods Fluids 58(8):923-944. doi:10.1002/fld.1775 · Zbl 1151.76556 · doi:10.1002/fld.1775
[143] Losasso F, Gibou F, Fedkiw R (2004) Simulating water and smoke with an octree data structure. ACM Trans Graph 23(3):457-462. doi:10.1145/1015706.1015745 · doi:10.1145/1015706.1015745
[144] Losasso F, Fedkiw R, Osher S (2006) Spatially adaptive techniques for level set methods and incompressible flow. Comput Fluids 35(10):995-1010. doi:10.1016/j.compfluid.2005.01.006 · Zbl 1177.76295
[145] Marchandise E, Remacle JF (2006) A stabilized finite element method using a discontinuous level set approach for solving two phase incompressible flows. J Comput Phys 219(2):780-800. doi:10.1016/j.jcp.2006.04.015 · Zbl 1189.76343 · doi:10.1016/j.jcp.2006.04.015
[146] Marchandise E, Remacle JF, Chevaugeon N (2006) A quadrature-free discontinuous Galerkin method for the level set equation. J Comput Phys 212(1):338-357. doi:10.1016/j.jcp.2005.07.006 · Zbl 1081.65094 · doi:10.1016/j.jcp.2005.07.006
[147] Maronnier V, Picasso M, Rappaz J (1999) Numerical simulation of free surface flows. J Comput Phys 155(2):439-455. doi:10.1006/jcph.1999.6346 · Zbl 0952.76070 · doi:10.1006/jcph.1999.6346
[148] Maronnier V, Picasso M, Rappaz J (2003) Numerical simulation of three-dimensional free surface flows. Int J Numer Methods Fluids 42(7):697-716. doi:10.1002/fld.532 · Zbl 1143.76539 · doi:10.1002/fld.532
[149] Martin JC, Moyce WJ (1952) Part IV. An experimental study of the collapse of liquid columns on a rigid horizontal plane. Philos Trans R Soc Lond Ser A Math Phys Sci 244(882):312-324. doi:10.1098/rsta.1952.0006 · doi:10.1098/rsta.1952.0006
[150] Mashayek F, Ashgriz N (1995) A hybrid finite-element—volume-of-fluid method for simulating free surface flows and interfaces. Int J Numer Methods Fluids 20(12):1363-1380. doi:10.1002/fld.1650201205 · Zbl 0841.76040 · doi:10.1002/fld.1650201205
[151] Mashayek F, Ashgriz N (1995) A spine-flux method for simulating free surface flows. J Comput Phys 122(2):367-379. doi:10.1006/jcph.1995.1222 · Zbl 0840.76036 · doi:10.1006/jcph.1995.1222
[152] Masud A, Hughes TJ (1997) A space-time Galerkin/least-squares finite element formulation of the Navier-Stokes equations for moving domain problems. Comput Methods Appl Mech Eng 146(12):91-126. doi:10.1016/S0045-7825(96)01222-4 · Zbl 0899.76259 · doi:10.1016/S0045-7825(96)01222-4
[153] McKee S, Tomé M, Ferreira V, Cuminato J, Castelo A, Sousa F, Mangiavacchi N (2008) The MAC method. Comput Fluids 37(8):907-930. doi:10.1016/j.compfluid.2007.10.006 · Zbl 1237.76128 · doi:10.1016/j.compfluid.2007.10.006
[154] Minev P, Chen T, Nandakumar K (2003) A finite element technique for multifluid incompressible flow using Eulerian grids. J Comput Phys 187(1):255-273. doi:10.1016/S0021-9991(03)00098-6 · Zbl 1047.76047 · doi:10.1016/S0021-9991(03)00098-6
[155] Mompean G, Thais L, Tomé M, Castelo A (2011) Numerical prediction of three-dimensional time-dependent viscoelastic extrudate swell using differential and algebraic models. Comput Fluids 44(1):68-78. doi:10.1016/j.compfluid.2010.12.010 · Zbl 1271.76023 · doi:10.1016/j.compfluid.2010.12.010
[156] Mut F, Buscaglia GC, Dari EA (2006) New mass-conserving algorithm for level set redistancing on unstructured meshes. ASME J Appl Mech 73(6):1011-1016. doi:10.1115/1.2198244 · Zbl 1111.74571 · doi:10.1115/1.2198244
[157] Navti S, Lewis R, Taylor C (1998) Numerical simulation of viscous free surface flow. Int J Numer Methods Heat Fluid Flow 8(4):445-464. doi:10.1108/09615539810213223 · Zbl 0943.76051 · doi:10.1108/09615539810213223
[158] Nithiarasu P (2005) An arbitrary Lagrangian Eulerian (ALE) formulation for free surface flows using the characteristic-based split (CBS) scheme. Int J Numer Methods Fluids 48(12):1415-1428. doi:10.1002/fld.987 · Zbl 1072.76041 · doi:10.1002/fld.987
[159] Olsson E, Kreiss G (2005) A conservative level set method for two phase flow. J Comput Phys 210(1):225-246. doi:10.1016/j.jcp.2005.04.007 · Zbl 1154.76368 · doi:10.1016/j.jcp.2005.04.007
[160] Olsson E, Kreiss G, Zahedi S (2007) A conservative level set method for two phase flow II. J Comput Phys 225(1):785-807. doi:10.1016/j.jcp.2006.12.027 · Zbl 1256.76052 · doi:10.1016/j.jcp.2006.12.027
[161] Oñate E, García J (2001) A finite element method for fluidstructure interaction with surface waves using a finite calculus formulation. Comput Methods Appl Mech Eng 191(67):635-660. doi:10.1016/S0045-7825(01)00306-1 · Zbl 0996.76052 · doi:10.1016/S0045-7825(01)00306-1
[162] Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J Comput Phys 79(1):12-49. doi:10.1016/0021-9991(88)90002-2 · Zbl 0659.65132 · doi:10.1016/0021-9991(88)90002-2
[163] Osher S, Fedkiw RP (2001) Level set methods: an overview and some recent results. J Comput Phys 169(2):463-502. doi:10.1006/jcph.2000.6636 · Zbl 0988.65093 · doi:10.1006/jcph.2000.6636
[164] Owkes M, Desjardins O (2013) A discontinuous Galerkin conservative level set scheme for interface capturing in multiphase flows. J Comput Phys 249:275-302. doi:10.1016/j.jcp.2013.04.036 · Zbl 1427.76218 · doi:10.1016/j.jcp.2013.04.036
[165] Park IR, Kim KS, Kim J, Van SH (2009) A volume-of-fluid method for incompressible free surface flows. Int J Numer Meth Fluids 61(12):1331-1362. doi:10.1002/fld.2000 · Zbl 1422.76133 · doi:10.1002/fld.2000
[166] Parolini N, Quarteroni A (2005) Mathematical models and numerical simulations for the Americas Cup. Comput Methods Appl Mech Eng 194(9-11):1001-1026. doi:10.1016/j.cma.2004.06.020 · Zbl 1091.76013 · doi:10.1016/j.cma.2004.06.020
[167] Pilliod JEJ, Puckett EG (2004) Second-order accurate volume-of-fluid algorithms for tracking material interfaces. J Comput Phys 199(2):465-502. doi:10.1016/j.jcp.2003.12.023 · Zbl 1126.76347 · doi:10.1016/j.jcp.2003.12.023
[168] Quecedo M, Pastor M, Herreros M, Merodo JF, Zhang Q (2005) Comparison of two mathematical models for solving the dam break problem using the FEM method. Comput Methods Appl Mech Eng 194(3638):3984-4005. doi:10.1016/j.cma.2004.09.011 · Zbl 1131.76335 · doi:10.1016/j.cma.2004.09.011
[169] Quecedo M, Pastor M (2001) Application of the level set method to the finite element solution of two-phase flows. Int J Numer Methods Eng 50(3):645-663. doi:10.1002/1097-0207(20010130)50:3<645:AID-NME42>3.0.CO;2-2 · Zbl 0989.76063
[170] Raad PE, Bidoae R (2005) The three-dimensional Eulerian-Lagrangian marker and micro cell method for the simulation of free surface flows. J Comput Phys 203(2):668-699. doi:10.1016/j.jcp.2004.09.013 · Zbl 1143.76517 · doi:10.1016/j.jcp.2004.09.013
[171] Rabier S, Medale M (2003) Computation of free surface flows with a projection FEM in a moving mesh framework. Comput Methods Appl Mech Eng 192(4142):4703-4721. doi:10.1016/S0045-7825(03)00456-0 · Zbl 1054.76052 · doi:10.1016/S0045-7825(03)00456-0
[172] Radovitzky R, Ortiz M (1998) Lagrangian finite element analysis of Newtonian fluid flows. Int J Numer Methods Eng 43(4):607-619. doi:10.1002/(SICI)1097-0207(19981030)43:4<607:AID-NME399>3.0.CO;2-N · Zbl 0945.76047
[173] Raessi M, Pitsch H (2012) Consistent mass and momentum transport for simulating incompressible interfacial flows with large density ratios using the level set method. Comput Fluids 63:70-81. doi:10.1016/j.compfluid.2012.04.002 · Zbl 1365.76238 · doi:10.1016/j.compfluid.2012.04.002
[174] Rafiee A, Pistani F, Thiagarajan K (2011) Study of liquid sloshing: numerical and experimental approach. Comput Mech 47(1):65-75. doi:10.1007/s00466-010-0529-6 · doi:10.1007/s00466-010-0529-6
[175] Ramaswamy B, Kawahara M (1987) Lagrangian finite element analysis applied to viscous free surface fluid flow. Int J Numer Methods Fluids 7(9):953-984. doi:10.1002/fld.1650070906 · Zbl 0622.76031 · doi:10.1002/fld.1650070906
[176] Ramshaw JD, Trapp JA (1976) A numerical technique for low-speed homogeneous two-phase flow with sharp interfaces. J Comput Phys 21(4):438-453. doi:10.1016/0021-9991(76)90039-5 · Zbl 0337.76035 · doi:10.1016/0021-9991(76)90039-5
[177] Ravindran K, Lewis R (1998) Finite element modelling of solidification effects in mould filling. Finite Elem Anal Des 31(2):99-116. doi:10.1016/S0168-874X(98)00053-5 · Zbl 0915.76053 · doi:10.1016/S0168-874X(98)00053-5
[178] Ray B, Biswas G, Sharma A, Welch SW (2013) Clsvof method to study consecutive drop impact on liquid pool. Int J Numer Methods Heat Fluid Flow 23(1):143-158. doi:10.1108/09615531311289150 · Zbl 1356.76255 · doi:10.1108/09615531311289150
[179] Rider WJ, Kothe DB (1998) Reconstructing volume tracking. J Comput Phys 141(2):112-152. doi:10.1006/jcph.1998.5906 · Zbl 0933.76069 · doi:10.1006/jcph.1998.5906
[180] Rispoli F, Corsini A, Tezduyar TE (2007) Finite element computation of turbulent flows with the discontinuity-capturing directional dissipation (DCDD). Comput Fluids 36(1):121-126. doi:10.1016/j.compfluid.2005.07.004 · Zbl 1181.76098 · doi:10.1016/j.compfluid.2005.07.004
[181] Rouy E, Tourin A (1992) A viscosity solutions approach to shape-from-shading. SIAM J Numer Anal 29(3):867-884. doi:10.1137/0729053 · Zbl 0754.65069 · doi:10.1137/0729053
[182] Saito H, Scriven L (1981) Study of coating flow by the finite element method. J Comput Phys 42(1):53-76. doi:10.1016/0021-9991(81)90232-1 · Zbl 0466.76035 · doi:10.1016/0021-9991(81)90232-1
[183] Sauerland H, Fries TP (2011) The extended finite element method for two-phase and free-surface flows: a systematic study. J Comput Phys 230(9):3369-3390. doi:10.1016/j.jcp.2011.01.033 · Zbl 1316.76050 · doi:10.1016/j.jcp.2011.01.033
[184] Sauerland H, Fries TP (2012) The stable XFEM for two-phase flows. Comput Fluids 87:41-49. doi:10.1016/j.compfluid.2012.10.017 · Zbl 1290.76073 · doi:10.1016/j.compfluid.2012.10.017
[185] Scardovelli R, Zaleski S (1999) Direct numerical simulation of free-surface and interfacial flow. Annu Rev Fluid Mech 31(1):567-603. doi:10.1146/annurev.fluid.31.1.567 · doi:10.1146/annurev.fluid.31.1.567
[186] Scardovelli R, Zaleski S (2003) Interface reconstruction with least-square fit and split Eulerian-Lagrangian advection. Int J Numer Methods Fluids 41(3):251-274. doi:10.1002/fld.431 · Zbl 1047.76080 · doi:10.1002/fld.431
[187] Sethian JA (1996) A fast marching level set method for monotonically advancing fronts. Proc Natl Acad Sci USA 93:1591-1595 · Zbl 0852.65055
[188] Sethian J (2001) Evolution, implementation, and application of level set and fast marching methods for advancing fronts. J Comput Phys 169(2):503-555. doi:10.1006/jcph.2000.6657 · Zbl 0988.65095 · doi:10.1006/jcph.2000.6657
[189] Sethian JA, Smereka P (2003) Level set methods for fluid interfaces. Annu Rev Fluid Mech 35:341-372. doi:10.1146/annurev.fluid.35.101101.161105 · Zbl 1041.76057 · doi:10.1146/annurev.fluid.35.101101.161105
[190] Sheu TW, Yu C, Chiu P (2009) Development of a dispersively accurate conservative level set scheme for capturing interface in two-phase flows. J Comput Phys 228(3):661-686. doi:10.1016/j.jcp.2008.09.032 · Zbl 1259.76054 · doi:10.1016/j.jcp.2008.09.032
[191] Shin S, Juric D (2009) A hybrid interface method for three-dimensional multiphase flows based on front tracking and level set techniques. Int J Numer Methods Fluids 60(7):753-778. doi:10.1002/fld.1912 · Zbl 1369.76041 · doi:10.1002/fld.1912
[192] Shu CW, Osher S (1988) Efficient implementation of essentially non-oscillatory shock-capturing schemes. J Comput Phys 77(2):439-471. doi:10.1016/0021-9991(88)90177-5 · Zbl 0653.65072 · doi:10.1016/0021-9991(88)90177-5
[193] Shu CW, Osher S (1989) Efficient implementation of essentially non-oscillatory shock-capturing schemes. II. J Comput Phys 83(1):32-78. doi:10.1016/0021-9991(89)90222-2 · Zbl 0674.65061 · doi:10.1016/0021-9991(89)90222-2
[194] Soulaïmani A, Fortin M, Dhatt G, Ouellet Y (1991) Finite element simulation of two- and three-dimensional free surface flows. Comput Methods Appl Mech Eng 86(3):265-296. doi:10.1016/0045-7825(91)90224-T · Zbl 0761.76037 · doi:10.1016/0045-7825(91)90224-T
[195] Soulaïmani A, Saad Y (1998) An arbitrary Lagrangian-Eulerian finite element method for solving three-dimensional free surface flows. Comput Methods Appl Mech Eng 162(14):79-106. doi:10.1016/S0045-7825(97)00330-7 · Zbl 0948.76043 · doi:10.1016/S0045-7825(97)00330-7
[196] Souli M, Zolesio J (2001) Arbitrary Lagrangian-Eulerian and free surface methods in fluid mechanics. Comput Methods Appl Mech Eng 191(35):451-466. doi:10.1016/S0045-7825(01)00313-9 · Zbl 0999.76084 · doi:10.1016/S0045-7825(01)00313-9
[197] Strain J (1999) Fast tree-based redistancing for level set computations. J Comput Phys 152(2):664-686. doi:10.1006/jcph.1999.6259 · Zbl 0944.65020 · doi:10.1006/jcph.1999.6259
[198] Sussman M, Smereka P, Osher S (1994) A level set approach for computing solutions to incompressible two-phase flow. J Comput Phys 114(1):146-159. doi:10.1006/jcph.1994.1155 · Zbl 0808.76077 · doi:10.1006/jcph.1994.1155
[199] Sussman M, Smereka P (1997) Axisymmetric free boundary problems. J Fluid Mech 341:269-294. doi:10.1017/S0022112097005570 · Zbl 0892.76090 · doi:10.1017/S0022112097005570
[200] Sussman M, Fatemi E, Smereka P, Osher S (1998) An improved level set method for incompressible two-phase flows. Comput Fluids 27(56):663-680. doi:10.1016/S0045-7930(97)00053-4 · Zbl 0967.76078 · doi:10.1016/S0045-7930(97)00053-4
[201] Sussman M, Almgren AS, Bell JB, Colella P, Howell LH, Welcome ML (1999) An adaptive level set approach for incompressible two-phase flows. J Comput Phys 148(1):81-124. doi:10.1006/jcph.1998.6106 · Zbl 0930.76068 · doi:10.1006/jcph.1998.6106
[202] Sussman M, Fatemi E (1999) An efficient, interface-preserving level set redistancing algorithm and its application to interfacial incompressible fluid flow. SIAM J Sci Comput 20(4):1165-1191. doi:10.1137/S1064827596298245 · Zbl 0958.76070 · doi:10.1137/S1064827596298245
[203] Sussman M, Puckett EG (2000) A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows. J Comput Phys 162(2):301-337. doi:10.1006/jcph.2000.6537 · Zbl 0977.76071 · doi:10.1006/jcph.2000.6537
[204] Sussman M (2003) A second order coupled level set and volume-of-fluid method for computing growth and collapse of vapor bubbles. J Comput Phys 187(1):110-136. doi:10.1016/S0021-9991(03)00087-1 · Zbl 1047.76085 · doi:10.1016/S0021-9991(03)00087-1
[205] Sussman M (2005) A parallelized, adaptive algorithm for multiphase flows in general geometries. Comput Struct 83(6-7):435-444. doi:10.1016/j.compstruc.2004.06.006 · doi:10.1016/j.compstruc.2004.06.006
[206] Sussman M, Smith K, Hussaini M, Ohta M, Zhi-Wei R (2007) A sharp interface method for incompressible two-phase flows. J Comput Phys 221(2):469-505. doi:10.1016/j.jcp.2006.06.020 · Zbl 1194.76219 · doi:10.1016/j.jcp.2006.06.020
[207] Tezduyar T, Park Y (1986) Discontinuity-capturing finite element formulations for nonlinear convection-diffusion-reaction equations. Comput Methods Appl Mech Eng 59(3):307-325. doi:10.1016/0045-7825(86)90003-4 · Zbl 0593.76096 · doi:10.1016/0045-7825(86)90003-4
[208] Tezduyar T (1991) Stabilized finite element formulations for incompressible flow computations. Adv Appl Mech 28:1-44. doi:10.1016/S0065-2156(08)70153-4 · Zbl 0747.76069
[209] Tezduyar T, Behr M, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure: I. The concept and the preliminary numerical tests. Comput Methods Appl Mech Eng 94(3):339-351. doi:10.1016/0045-7825(92)90059-S · Zbl 0745.76044
[210] Tezduyar T, Behr M, Mittal S, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure: II. Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders. Comput Methods Appl Mech Eng 94(3):353-371. doi:10.1016/0045-7825(92)90060-W · Zbl 0745.76045 · doi:10.1016/0045-7825(92)90060-W
[211] Tezduyar T, Mittal S, Ray S, Shih R (1992) Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements. Comput Methods Appl Mech Eng 95(2):221-242. doi:10.1016/0045-7825(92)90141-6 · Zbl 0756.76048
[212] Tezduyar T, Aliabadi S, Behr M (1998) Enhanced-discretization interface-capturing technique (EDICT) for computation of unsteady flows with interfaces. Comput Methods Appl Mech Eng 155(3-4):235-248. doi:10.1016/S0045-7825(97)00194-1 · Zbl 0961.76046 · doi:10.1016/S0045-7825(97)00194-1
[213] Tezduyar TE, Aliabadi S (2000) EDICT for 3D computation of two-fluid interfaces. Comput Methods Appl Mech Eng 190(34):403-410. doi:10.1016/S0045-7825(00)00210-3 · Zbl 0995.76052 · doi:10.1016/S0045-7825(00)00210-3
[214] Tezduyar TE (2001) Finite element methods for flow problems with moving boundaries and interfaces. Arch Comput Methods Eng 8(2):83-130. doi:10.1007/BF02897870 · Zbl 1039.76037 · doi:10.1007/BF02897870
[215] Tezduyar TE (2003) Computation of moving boundaries and interfaces and stabilization parameters. Int J Numer Methods Fluids 43(5):555-575. doi:10.1002/fld.505 · Zbl 1032.76605 · doi:10.1002/fld.505
[216] Tezduyar TE (2006) Interface-tracking and interface-capturing techniques for finite element computation of moving boundaries and interfaces. Comput Methods Appl Mech Eng 195(23-24):2983-3000. doi:10.1016/j.cma.2004.09.018 · Zbl 1176.76076 · doi:10.1016/j.cma.2004.09.018
[217] Tezduyar TE (2007) Finite elements in fluids: stabilized formulations and moving boundaries and interfaces. Comput Fluids 36(2):191-206. doi:10.1016/j.compfluid.2005.02.011 · Zbl 1177.76202 · doi:10.1016/j.compfluid.2005.02.011
[218] Thompson E (1986) Use of pseudo-concentrations to follow creeping viscous flows during transient analysis. Int J Numer Methods Fluids 6(10):749-761. doi:10.1002/fld.1650061005 · doi:10.1002/fld.1650061005
[219] Tomé M, Filho A, Cuminato J, Mangiavacchi N, Mckee S (2001) GENSMAC3D: a numerical method for solving unsteady three-dimensional free surface flows. Int J Numer Methods Fluids 37(7):747-796. doi:10.1002/fld.148 · Zbl 1055.76536 · doi:10.1002/fld.148
[220] Unverdi SO, Tryggvason G (1992) A front-tracking method for viscous, incompressible, multi-fluid flows. J Comput Phys 100(1):25-37. doi:10.1016/0021-9991(92)90307-K · Zbl 0758.76047 · doi:10.1016/0021-9991(92)90307-K
[221] van der Pijl SP, Segal A, Vuik C, Wesseling P (2005) A mass-conserving level-set method for modelling of multi-phase flows. Int J Numer Methods Fluids 47(4):339-361. doi:10.1002/fld.817 · Zbl 1065.76160 · doi:10.1002/fld.817
[222] Vartdal M, Bøckmann A (2013) An oriented particle level set method based on surface coordinates. J Comput Phys 251:237-250. doi:10.1016/j.jcp.2013.05.044 · Zbl 1349.82125 · doi:10.1016/j.jcp.2013.05.044
[223] Wackers J, Koren B, Raven H, Ploeg A, Starke A, Deng G, Queutey P, Visonneau M, Hino T, Ohashi K (2011) Free-surface viscous flow solution methods for ship hydrodynamics. Arch Comput Methods Eng 18(1):1-41. doi:10.1007/s11831-011-9059-4 · Zbl 1284.76282 · doi:10.1007/s11831-011-9059-4
[224] Wall WA, Genkinger S, Ramm E (2007) A strong coupling partitioned approach for fluid-structure interaction with free surfaces. Comput Fluids 36(1):169-183. doi:10.1016/j.compfluid.2005.08.007 · Zbl 1181.76147 · doi:10.1016/j.compfluid.2005.08.007
[225] Wan T, Aliabadi S, Bigler C (2009) A hybrid scheme based on finite element/volume methods for two immiscible fluid flows. Int J Numer Methods Fluids 61(8):930-944. doi:10.1002/fld.1997 · Zbl 1252.76049 · doi:10.1002/fld.1997
[226] Wang CY, Teng Jt, Huang GP (2011) Numerical simulation of sloshing motion inside a two dimensional rectangular tank by level set method. Int J Numer Methods Heat Fluid Flow 21(1):5-31. doi:10.1108/09615531111095049 · Zbl 1513.62060 · doi:10.1108/09615531111095049
[227] Wilson RV, Carrica PM, Stern F (2007) Simulation of ship breaking bow waves and induced vortices and scars. Int J Numer Methods Fluids 54(4):419-451. doi:10.1002/fld.1406 · Zbl 1241.76099
[228] Wörner M (2012) Numerical modeling of multiphase flows in microfluidics and micro process engineering: a review of methods and applications. Microfluid Nanofluid 12(6):841-886. doi:10.1007/s10404-012-0940-8 · Zbl 1398.76051
[229] Xu Z, Accorsi M (2004) Finite element mesh update methods for fluid-structure interaction simulations. Finite Elem Anal Des 40(9-10):1259-1269. doi:10.1016/j.finel.2003.05.001 · doi:10.1016/j.finel.2003.05.001
[230] Yang X, James AJ (2006) Analytic relations for reconstructing piecewise linear interfaces in triangular and tetrahedral grids. J Comput Phys 214(1):41-54. doi:10.1016/j.jcp.2005.09.002 · Zbl 1137.76456 · doi:10.1016/j.jcp.2005.09.002
[231] Yang X, James AJ, Lowengrub J, Zheng X, Cristini V (2006) An adaptive coupled level-set/volume-of-fluid interface capturing method for unstructured triangular grids. J Comput Phys 217(2):364-394. doi:10.1016/j.jcp.2006.01.007 · Zbl 1160.76377 · doi:10.1016/j.jcp.2006.01.007
[232] Yang J, Stern F (2009) Sharp interface immersed-boundary/level-set method for wave-body interactions. J Comput Phys 228(17):6590-6616. doi:10.1016/j.jcp.2009.05.047 · Zbl 1261.76040 · doi:10.1016/j.jcp.2009.05.047
[233] Zahedi S, Kronbichler M, Kreiss G (2012) Spurious currents in finite element based level set methods for two-phase flow. Int J Numer Methods Fluids 69(9):1433-1456. doi:10.1002/fld.2643 · Zbl 1253.76066 · doi:10.1002/fld.2643
[234] Zalesak ST (1979) Fully multidimensional flux-corrected transport algorithms for fluids. J Comput Phys 31(3):335-362. doi:10.1016/0021-9991(79)90051-2 · Zbl 0416.76002 · doi:10.1016/0021-9991(79)90051-2
[235] Zhang Y, Zou Q, Greaves D (2010) Numerical simulation of free-surface flow using the level-set method with global mass correction. Int J Numer Methods Fluids 63(6):651-680. doi:10.1002/fld.2090 · Zbl 1423.76359 · doi:10.1002/fld.2090
[236] Zhao L, Mao J, Bai X, Liu X, Li T, Williams J (2014) Finite element implementation of an improved conservative level set method for two-phase flow. Comput Fluids 100:138-154. doi:10.1016/j.compfluid.2014.04.027 · Zbl 1391.76376 · doi:10.1016/j.compfluid.2014.04.027
[237] Zhou H, Li JF, Wang TS (2008) Simulation of liquid sloshing in curved-wall containers with arbitrary Lagrangian-Eulerian method. Int J Numer Methods Fluids 57(4):437-452. doi:10.1002/fld.1602 · Zbl 1236.76034 · doi:10.1002/fld.1602
[238] Zienkiewicz OC, Codina R (1995) A general algorithm for compressible and incompressible flow—Part I. The split, characteristic-based scheme. Int J Numer Methods Fluids 20(8-9):869-885. doi:10.1002/fld.1650200812 · Zbl 0837.76043 · doi:10.1002/fld.1650200812
[239] Zienkiewicz O, Nithiarasu P, Codina R, Vázquez M, Ortiz P (1999) The characteristic-based-split procedure: an efficient and accurate algorithm for fluid problems. Int J Numer Methods Fluids 31(1):359-392. doi:10.1002/(SICI)1097-0363(19990915)31:1<359:AID-FLD984>3.0.CO;2-7 · Zbl 0985.76069
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.