×

The real Johnson-Wilson cohomology of \(\mathbb{CP}^\infty\). (English) Zbl 1348.55007

Let \(E(n)\) be the Johnson-Wilson spectrum at the prime 2. This is an algebra over the complex cobordism spectrum \(MU\) with coefficients \[ E(n)^* = \mathbb{Z}_{(2)} [v_1, \dots, v_{n-1}, v_n^{\pm 1} ] \] with \(v_k\) in cohomological degree \(-2(2^k -1)\). One can equip this spectrum \(E(n)\) with the structure of a genuine \(C_2\)-equivariant spectrum denoted \(\mathbb{ER}(n)\). This is analogous to how the complex conjugation action on \(MU\) can be used to construct the genuine \(C_2\)-equivariant spectrum \(\mathbb{MR}\). Forgetting the action on spectrum \(\mathbb{ER}(n)\) returns \(E(n)\). The \(C_2\)-fixed points of \(\mathbb{ER}(n)\) give a spectrum called \(ER(n)\). These spectra are higher chromatic versions of well-known spectra: \(ER(1)\) is real \(K\)-theory \(KO_{(2)}\) and \(\mathbb{ER}(1)\) is Atiyah’s Real \(K\)-theory \(\mathbb{KR}_{(2)}\).
The main result of this paper is a calculation of \(ER(n)^*( \mathbb{CP}^\infty )\) for all \(n\) using a Bockstein spectral sequence: \[ E_1^{i,j} = E(n)^{i \lambda(n)+j-i}(X) \implies ER(n)^{j-i}(X) \] where \(\lambda(n)=2(2^n-1)^2-1\). Furthermore the author obtains a ring description of \(ER(n)^*( \mathbb{CP}^\infty )\) in terms of generators and relations. This paper is part of a larger project to calculate the \(ER(n)\)-cohomology of basic spaces.

MSC:

55N20 Generalized (extraordinary) homology and cohomology theories in algebraic topology
55N91 Equivariant homology and cohomology in algebraic topology
55P42 Stable homotopy theory, spectra
55P91 Equivariant homotopy theory in algebraic topology
55T05 General theory of spectral sequences in algebraic topology

References:

[1] Araki, Shôrô; Murayama, Mitutaka, \(τ\)-Cohomology theories, Jpn. J. Math., 4, 2, 363-416 (1978) · Zbl 0411.55004
[2] Banerjee, Romie, On the \(E R(2)\)-cohomology of some odd-dimensional projective spaces, Topol. Appl., 160, 12, 1395-1405 (2013) · Zbl 1408.55002
[3] Bruner, Robert R.; Greenlees, J. P.C., Connective Real \(K\)-Theory of Finite Groups, Mathematical Surveys and Monographs, vol. 169 (2010), American Mathematical Society: American Mathematical Society Providence, RI · Zbl 1251.19001
[4] Fujii, Michikazu, \(K_O\)-groups of projective spaces, Osaka J. Math., 4, 141-149 (1967) · Zbl 0153.25201
[5] Fujii, Michikazu, Cobordism theory with reality, Math. J. Okayama Univ., 18, 2, 171-188 (1975-1976) · Zbl 0334.55017
[6] Hill, Michael A.; Hopkins, Michael J.; Ravenel, Douglas C., On the non-existence of elements of Kervaire invariant one (2009) · Zbl 1373.55023
[7] Hu, Po; Kriz, Igor, Real-oriented homotopy theory and an analogue of the Adams-Novikov spectral sequence, Topology, 40, 2, 317-399 (2001) · Zbl 0967.55010
[8] Hopkins, Michael J.; Kuhn, Nicholas J.; Ravenel, Douglas C., Generalized group characters and complex oriented cohomology theories, J. Am. Math. Soc., 13, 3, 553-594 (2000), (electronic) · Zbl 1007.55004
[9] Hill, Michael A.; Meier, Lennart, All about \(t m f_1(3) (2015)\)
[10] Hovey, Mark; Strickland, Neil, Comodules and Landweber exact homology theories, Adv. Math., 192, 2, 427-456 (2005) · Zbl 1075.55001
[11] Kitchloo, Nitu; Lorman, Vitaly; Wilson, W. Stephen, Landweber flat real pairs and \(E R(n)\)-cohomology (2016) · Zbl 1385.55004
[13] Kitchloo, Nitu; Lorman, Vitaly; Wilson, W. Stephen, The \(E R(2)\)-cohomology of \(B Z /(2^q)\) and \(C P^n (2016)\) · Zbl 1429.55005
[14] Kitchloo, Nitu; Wilson, W. Stephen, On fibrations related to real spectra, (Proceedings of the Nishida Fest. Proceedings of the Nishida Fest, Kinosaki 2003. Proceedings of the Nishida Fest. Proceedings of the Nishida Fest, Kinosaki 2003, Geom. Topol. Monogr., vol. 10 (2007), Geom. Topol. Publ.: Geom. Topol. Publ. Coventry), 237-244 · Zbl 1117.55001
[15] Kitchloo, Nitu; Wilson, W. Stephen, The second real Johnson-Wilson theory and nonimmersions of \(R P^n\), Homol. Homotopy Appl., 10, 3, 223-268 (2008) · Zbl 1160.55002
[16] Kitchloo, Nitu; Wilson, W. Stephen, The second real Johnson-Wilson theory and nonimmersions of \(R P^n\). II, Homol. Homotopy Appl., 10, 3, 269-290 (2008) · Zbl 1161.55002
[17] Kitchloo, Nitu; Wilson, W. Stephen, The \(E R(n)\)-cohomology of \(B O(q)\) and real Johnson-Wilson orientations for vector bundles, Bull. Lond. Math. Soc., 47, 5, 835-847 (2015) · Zbl 1328.55006
[18] Landweber, Peter S., Conjugations on complex manifolds and equivariant homotopy of MU, Bull. Am. Math. Soc., 74, 271-274 (1968) · Zbl 0181.26801
[19] Landweber, Peter S., Homological properties of comodules over \(M U_\ast(M U)\) and \(\text{BP}_\ast \)(BP), Am. J. Math., 98, 3, 591-610 (1976) · Zbl 0355.55007
[20] Lewis, L. G.; May, J. P.; Steinberger, M.; McClure, J. E., Equivariant Stable Homotopy Theory, Lecture Notes in Mathematics, vol. 1213 (1986), Springer-Verlag: Springer-Verlag Berlin, with contributions by J.E. McClure · Zbl 0611.55001
[21] Laures, Gerd; Olbermann, Martin, \(T M F_0(3)\)-characteristic classes for string bundles, Math. Z., 282, 1-2, 511-533 (2016) · Zbl 1337.55008
[22] Lorman, Vitaly, Real Johnson-Wilson theory and computations (2016), thesis · Zbl 1348.55007
[23] Mahowald, Mark; Rezk, Charles, Topological modular forms of level 3, Pure Appl. Math. Q., 5, 2, 853-872 (2009), Special Issue: In honor of Friedrich Hirzebruch. Part 1 · Zbl 1192.55006
[24] Reich, Holger; Varisco, Marco, On the Adams isomorphism for equivariant orthogonal spectra (2014) · Zbl 1350.55015
[25] Sanderson, B. J., Immersions and embeddings of projective spaces, Proc. Lond. Math. Soc., 3, 14, 137-153 (1964) · Zbl 0122.41703
[26] Yamaguchi, Atsushi, Real \(K\)-cohomology of complex projective spaces, Sci. Math. Jpn., 65, 3, 407-422 (2007) · Zbl 1141.55001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.