×

\(TMF_0(3)\)-characteristic classes for string bundles. (English) Zbl 1337.55008

The various spectra called topological modular forms have historical origins in a variety of areas of mathematics. One of the more enticing is that the associated homology theory serves as the natural target for the Witten genus on smooth compact manifolds with a string structure – that is, for Spin manifolds \(M\) with a chosen trivialization of the characteristic class \(\lambda(M)\) with \(2\lambda\) the first Pontrjagin class. For this and other related reasons, it’s important to calculate the \(TMF\) cohomology of \(BString\), the classifying space for String bundles.
In this paper, the authors calculate a variant of the \(TMF_0(3)\) cohomology of \(BString\), where \(TMF_0(3)\) is the spectrum obtained by the Hopkins-Miller technology from the moduli stack of smooth elliptic curves with a chosen subgroup of order \(3\). To be completely specific, they calculate the cohomology of \(BString\) with coefficients in a \(K(2)\)-local spectrum \(\widehat{TMF_0(3)}\), where \(K(2)\) is a height \(2\) Morava \(K\)-theory at the prime \(2\). The answer turns out to be surprisingly simple: there is an isomorphism of topological rings \[ \widehat{TMF_0(3)}^\ast [[\tilde{r},\pi_1,\pi_2,\ldots]] \cong \widehat{TMF_0(3)}^\ast BString \] where the classes \(\pi_i\) are versions of Pontrjagin classes and the class \(\tilde{r}\) is obtained by analyzing the cubical structure of a specific line bundle. Constructing and analyzing \(\tilde{r}\) is one of the most interesting parts of the paper.
The spectrum \(\widehat{TMF_0(3)}\) is obtained by taking the \(\mathbb{Z}/2\)-homotopy fixed points of a \(K(2)\)-local spectrum \(\widehat{TMF_1(3)}\) obtained from elliptic curves with a chosen point of order \(3\). The other key section of the paper analyzes the equivariant homotopy theory of \(\widehat{TMF_1(3)}\) and the \(\mathbb{Z}/2\)-action on \(\widehat{TMF_1(3)}^\ast BString\), previously calculated by the first author in [G. Laures, Trans. Am. Math. Soc. 368, No. 10, 7339–7357 (2016; Zbl 1345.55001)].

MSC:

55N34 Elliptic cohomology
55P20 Eilenberg-Mac Lane spaces
22E66 Analysis on and representations of infinite-dimensional Lie groups

Citations:

Zbl 1345.55001

References:

[1] Anderson, D.W., Brown Jr, E.H., Peterson, F.P.: The structure of the spin cobordism ring. Ann. Math. (2) 86, 271-298 (1967) · Zbl 0156.21605 · doi:10.2307/1970690
[2] Ando, M., Hopkins, M.J., Rezk, C.: Multiplicative orientations of KO-theory and of the spectrum of topological modular forms. Unpublished (2010)
[3] Ando, M., Hopkins, M.J., Strickland, N.P.: Elliptic spectra, the Witten genus and the theorem of the cube. Invent. Math. 146(3), 595-687 (2001) · Zbl 1031.55005 · doi:10.1007/s002220100175
[4] Atiyah, M.\[F.: KK\]-theory and reality. Q. J. Math. Oxf. Ser. (2) 17, 367-386 (1966) · Zbl 0146.19101 · doi:10.1093/qmath/17.1.367
[5] Deligne, P., Rapoport, M.: Les schémas de modules de courbes elliptiques, Modular functions of one variable, II (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972). Lecture Notes in Mathematics, Vol. 349, pp. 143-316. Springer, Berlin (1973) · Zbl 0466.55007
[6] Dugger, D.: An Atiyah-Hirzebruch spectral sequence for \[\mathit{KR}\] KR-theory. K-Theory 35(3-4), 213-256 (2006) · Zbl 1109.14024 · doi:10.1007/s10977-005-1552-9
[7] Elmendorf, A.D., Kriz, I., Mandell, M.A., May, J.P.: Rings, modules, and algebras in stable homotopy theory. In: Mathematical Surveys and Monographs, vol. 47. American Mathematical Society, Providence, RI (With an appendix by M. Cole) (1997) · Zbl 0894.55001
[8] Goerss, P.G.: Topological modular forms [after Hopkins, Miller and Lurie], Astérisque (2010), no. 332, Exp. No. 1005, viii, 221-255, Séminaire Bourbaki. Volume 2008/2009. Exposés 997-1011 · Zbl 1222.55003
[9] Hirzebruch, F., Berger, T., Jung, R.: Manifolds and modular forms, Aspects of mathematics, E20, Friedr. Vieweg & Sohn, Braunschweig (With appendices by Nils-Peter Skoruppa and by Paul Baum) (1992) · Zbl 0767.57014
[10] Hu, P., Kriz, I.: Real-oriented homotopy theory and an analogue of the Adams-Novikov spectral sequence. Topology 40(2), 317-399 (2001) · Zbl 0967.55010 · doi:10.1016/S0040-9383(99)00065-8
[11] Hopkins, M.J.: Algebraic topology and modular forms. In: Proceedings of the International Congress of Mathematicians, vol. I, pp. 291-317. Higher Education Press, Beijing (2002) · Zbl 1031.55007
[12] Hovey, M., Strickland, N.P.: Morava \[KK\]-theories and localisation. Mem. Am. Math. Soc. 139(666), viii+100 (1999) · Zbl 0929.55010
[13] Hu, P.: The \[{{\rm Ext}}^0\] Ext0-term of the real-oriented Adams-Novikov spectral sequence. In: Homotopy Methods in Algebraic Topology (Boulder, CO, 1999), Contemporary Mathematics, vol. 271, pp. 141-153. American Mathematical Society, Providence, RI (2001) · Zbl 1078.55010
[14] Kitchloo, N., Laures, G.: Real structures and Morava \[KK\]-theories. K-Theory 25(3), 201-214 (2002) · Zbl 0997.55007 · doi:10.1023/A:1015683917463
[15] Kitchloo, N., Laures, G., Wilson, W.S.: The Morava \[KK\]-theory of spaces related to \[\mathit{BO}\] BO. Adv. Math. 189(1), 192-236 (2004) · Zbl 1063.55002 · doi:10.1016/j.aim.2003.10.008
[16] Kronholm, W.C.: The \[{{\rm RO}}(G)\] RO(G)-graded Serre spectral sequence. Homol. Homotopy Appl. 12(1), 75-92 (2010) · Zbl 1195.55014 · doi:10.4310/HHA.2010.v12.n1.a7
[17] Kitchloo, N., Wilson, W.S.: Unstable splittings for real spectra. Algebr. Geom. Topol. 13(2), 1053-1070 (2013) · Zbl 1270.55003 · doi:10.2140/agt.2013.13.1053
[18] Kitchloo, N., Wilson, W.S.: The \[\mathit{ER(n)}\] ER(n)-cohomology of \[\mathit{BO(q)}\] BO(q), and real Johnson-Wilson orientations for vector bundles. Bull. Lond. Math. Soc. 47, 835-847 (2015) · Zbl 1328.55006 · doi:10.1112/blms/bdv057
[19] Laures, G.: Characteristic classes in \[T\!M\!F\] TMF of level \[\ \Gamma_1(3)\] Γ1(3). Trans. AMS. (2014, to appear). arXiv:1304.3588 · Zbl 1109.14024
[20] Laures, G.: \[K(1)K(1)\]-local topological modular forms. Invent. Math. 157(2), 371-403 (2004) · Zbl 1078.55010 · doi:10.1007/s00222-003-0355-y
[21] May, J.P.: Equivariant homotopy and cohomology theory, CBMS Regional Conference Series in Mathematics, vol. 91, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1996, With contributions by M. Cole, G. Comezaña, S. Costenoble, A. D. Elmendorf, J. P. C. Greenlees, L. G. Lewis, Jr., R. J. Piacenza, G. Triantafillou, and S. Waner · Zbl 0156.21605
[22] Miller, H.: The elliptic character and the Witten genus. In: Algebraic topology (Evanston, IL, 1988), Contemporary Mathematics, vol. 96, pp. 281-289. American Mathematical Society, Providence, RI (1989) · Zbl 1031.55005
[23] Mahowald, M., Rezk, C.: Topological modular forms of level 3. Pure Appl. Math. Q. 5(2) (2009) (Special Issue: In honor of Friedrich Hirzebruch. Part 1, 853-872) · Zbl 1192.55006
[24] Novikov, S.P.: Homotopy properties of Thom complexes. Mat. Sb. (N.S.) 57(99), 407-442 (1962) · Zbl 0193.51801
[25] Ravenel, D.C.: Localization with respect to certain periodic homology theories. Am. J. Math. 106(2), 351-414 (1984) · Zbl 0586.55003 · doi:10.2307/2374308
[26] Ravenel, D.C., Wilson, W.S.: The Morava \[KK\]-theories of Eilenberg-Mac Lane spaces and the Conner-Floyd conjecture. Am. J. Math. 102(4), 691-748 (1980) · Zbl 0466.55007 · doi:10.2307/2374093
[27] Ravenel, D.C., Wilson, W.S.: The Hopf ring for complex cobordism. J. Pure Appl. Algebra 9(3), 241-280 (1976/1977) · Zbl 0373.57020
[28] Ravenel, D.C., Wilson, W.S., Yagita, N.: Brown-Peterson cohomology from Morava \[KK\]-theory. K-Theory 15(2), 147-199 (1998) · Zbl 0912.55002 · doi:10.1023/A:1007776725714
[29] Silverman, J.H.: The arithmetic of elliptic curves. Graduate Texts in Mathematics, 2nd edn, vol. 106. Springer, Dordrecht (2009) · Zbl 1194.11005
[30] Su, H.-H.: The \[E(1,2)\] E(1,2) cohomology of the Eilenberg-MacLane space \[K(\mathbb{Z},3)K\](Z,3), ProQuest LLC. Ph.D. Thesis, The Johns Hopkins University, Ann Arbor, MI (2007)
[31] Thom, R.: Quelques propriétés globales des variétés différentiables. Comment. Math. Helv. 28, 17-86 (1954) · Zbl 0057.15502 · doi:10.1007/BF02566923
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.