×

Reducing subspaces of tensor products of weighted shifts. (English) Zbl 1348.47025

Summary: A unilateral weighted shift \(A\) is said to be simple if its weight sequence \(\{\alpha_n\}\) satisfies \(\nabla^3(\alpha_n^2)\neq 0\) for all \(n\geq 2\). We prove that if \(A\) and \(B\) are two simple unilateral weighted shifts, then \(A\otimes I + I\otimes B\) is reducible if and only if \(A\) and \(B\) are unitarily equivalent. We also study the reducing subspaces of \(A^k\otimes I + I\otimes B^l\) and give some examples. As an application, we study the reducing subspaces of multiplication operators \(M_{z^k + \alpha w^l}\) on function spaces.

MSC:

47B37 Linear operators on special spaces (weighted shifts, operators on sequence spaces, etc.)
47C15 Linear operators in \(C^*\)- or von Neumann algebras
47A80 Tensor products of linear operators
Full Text: DOI

References:

[1] Bhatia R, Rosenthal P. How and why to solve the operator equation AX -XB = Y. Bull Lond Math Soc, 1997, 29: 1-21 · Zbl 0909.47011 · doi:10.1112/S0024609396001828
[2] Conway, J., A Course in Operator Theory (2000) · Zbl 0936.47001
[3] Dan H, Huang H. Multiplication operators defined by a class of polynomials on L2a(D2). Integral Equations Operator Theory, 2014, 80: 581-601 · Zbl 1302.47061 · doi:10.1007/s00020-014-2176-3
[4] Douglas R, Putinar M, Wang K. Reducing subspaces for analytic multipliers of the Bergman space. J Funct Anal, 2012, 263: 1744-1765 · Zbl 1275.47071 · doi:10.1016/j.jfa.2012.06.008
[5] Douglas R, Sun S, Zheng D. Multiplication operators on the Bergman space via analytic continuation. Adv Math, 2011, 226: 541-583 · Zbl 1216.47053 · doi:10.1016/j.aim.2010.07.001
[6] Feller W. Completely monotone functions and sequences. Duke Math J, 1939, 5: 661-674 · JFM 65.0473.03 · doi:10.1215/S0012-7094-39-00555-7
[7] Guo K, Huang H. On multiplication operators of the Bergman space: Similarity, unitary equivalence and reducing subspaces. J Operator Theory, 2011, 65: 355-378 · Zbl 1222.47040
[8] Guo K, Huang H. Multiplication operators defined by covering maps on the Bergman space: The connection between operator theory and von Neumann algebras. J Funct Anal, 2011, 260: 1219-1255 · Zbl 1216.46054 · doi:10.1016/j.jfa.2010.11.002
[9] Guo K, Huang H. Reducing subspaces of multiplication operators on function spaces: Dedicated to the memory of Chen Kien-Kwong on the 120th anniversary of his birth. Appl Math J Chinese Univ Ser B, 2013, 28: 395-404 · Zbl 1299.47056 · doi:10.1007/s11766-013-3202-y
[10] Guo K, Huang H. Geometric constructions of thin Blaschke products and reducing subspace problem. Proc Lond Math Soc, 2014, 109: 1050-1091 · Zbl 1305.47026 · doi:10.1112/plms/pdu027
[11] Guo K, Huang H. Multiplication Operators on the Bergman Space. Berlin: Springer, 2015 · Zbl 1321.47002 · doi:10.1007/978-3-662-46845-6
[12] Guo K, Sun S, Zheng D, et al. Multiplication operators on the Bergman space via the Hardy space of the bidisk. J Reine Angew Math, 2009, 629: 129-168 · Zbl 1216.47055
[13] Hu J, Sun S, Xu X, et al. Reducing subspace of analytic Toeplitz operators on the Bergman space. Integral Equations Operator Theory, 2004, 49: 387-395 · Zbl 1077.47030 · doi:10.1007/s00020-002-1207-7
[14] Lu Y, Zhou X. Invariant subspaces and reducing subspaces of weighted Bergman space over bidisk. J Math Soc Japan, 2010, 62: 745-765 · Zbl 1202.47008 · doi:10.2969/jmsj/06230745
[15] Nikolskii, N., Treatise on the Shift Operator (1985)
[16] Nordgren E. Reducing subspaces of analytic Toeplitz operators. Duke Math J, 1967, 34: 175-181 · Zbl 0184.35202 · doi:10.1215/S0012-7094-67-03419-9
[17] Norman C. On Jordan bases for two related linear mappings. J Math Anal Appl, 1993, 175: 96-104 · Zbl 0778.15009 · doi:10.1006/jmaa.1993.1155
[18] Roth W. On direct product matrices. Bull Amer Math Soc, 1934, 40: 461-468 · JFM 60.0056.01 · doi:10.1090/S0002-9904-1934-05899-3
[19] Schoenberg I. Metric spaces and completely monotone functions. Ann of Math, 1938, 39: 811-841 · Zbl 0019.41503 · doi:10.2307/1968466
[20] Shi Y, Lu Y. Reducing subspaces for Toeplitz operators on the polydisk. Bull Korean Math Soc, 2013, 50: 687-696 · Zbl 1280.47039 · doi:10.4134/BKMS.2013.50.2.687
[21] Shields A. Weighted shift operators and analytic function theory. Math Surveys Monogr, 1974, 13: 49-128 · Zbl 0303.47021 · doi:10.1090/surv/013/02
[22] Stessin M, Zhu K. Reducing subspaces of weighted shift operators. Proc Amer Math Soc, 2002, 130: 2631-2639 · Zbl 1035.47015 · doi:10.1090/S0002-9939-02-06382-7
[23] Sun S, Wang Y. Reducing subspaces of certain analytic Toeplitz operators on the Bergman space. Northeast Math J, 1998, 14: 147-158 · Zbl 0923.47014
[24] Sun S, Zheng D, Zhong C. Multiplication operators on the Bergman space and weighted shifts. J Operator Theory, 2008, 59: 435-452 · Zbl 1150.47019
[25] Sun S, Zheng D, Zhong C. Classification of reducing subspaces of a class of multiplication operators via the Hardy space of the bidisk. Canad J Math, 2010, 62: 415-438 · Zbl 1185.47030 · doi:10.4153/CJM-2010-026-4
[26] Trampus A. A canonical basis for the matrix transformation. J Math Anal Appl, 1966, 14: 242-252 · Zbl 0145.25205 · doi:10.1016/0022-247X(66)90024-2
[27] Wang X, Dan H, Huang H. Reducing subspaces of multiplication operators with the symbol azk +ßwl on L2a (D2). Sci China Math, 2015, 58: 2167-2180 · Zbl 1328.47042
[28] Wu Z. Generalized Bochner’s theorem for radial function. Approx Theory Appl, 1997, 13: 47-57 · Zbl 0891.42003
[29] Zhu K. Reducing subspaces for a class of multiplication operators. J Lond Math Soc, 2000, 62: 553-568 · Zbl 1158.47309 · doi:10.1112/S0024610700001198
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.