×

Dimensionality reduction of dynamical systems with parameters: a geometric approach. (English) Zbl 1348.37034

Summary: A method for obtaining a low-dimensional description of a family of attractors produced by continuous-time nonlinear dynamical systems with static parameters is developed. A geometric approach is taken, which allows for the reduction of general state space manifolds, not restricted to \(\mathbb{R}^n\). An existing secant-based projection method, utilizing optimization over Grassmann manifolds, is extended for use with multiple parameter values and data sets. A family of reduced vector fields is obtained, with parameterization by the original parameter space, that reproduces the projected attractors and their dynamics in a low-dimensional space. We illustrate the method with several examples. The Rössler system demonstrates the accurate reproduction of period-doubling bifurcations; a forced damped double pendulum demonstrates a nonautonomous system with angular variables; and the Brusselator demonstrates application to a high-dimensional system.

MSC:

37C10 Dynamics induced by flows and semiflows
37C70 Attractors and repellers of smooth dynamical systems and their topological structure
34D45 Attractors of solutions to ordinary differential equations
34C20 Transformation and reduction of ordinary differential equations and systems, normal forms
Full Text: DOI

References:

[1] A. C. Antoulas, D. C. Sorensen, and S. Gugercin, {\it A survey of reduction methods for large-scale systems}, in Structured Matrices in Mathematics, Computer Science, and Engineering, I, Contemp. Math. 280, AMS, Providence, RI, 2001, pp. 193-219. · Zbl 1048.93014
[2] D. S. Broomhead and M. Kirby, {\it A new approach to dimensionality reduction: Theory and algorithms}, SIAM J. Appl. Math., 60 (2000), pp. 2114-2142. · Zbl 1038.65013
[3] D. S. Broomhead and M. J. Kirby, {\it The Whitney reduction network: A method for computing autoassociative graphs}, Neural Comput., 13 (2001), pp. 2595-2616. · Zbl 1003.68112
[4] D. S. Broomhead and M. J. Kirby, {\it Dimensionality reduction using secant-based projection methods: The induced dynamics in projected systems}, Nonlinear Dynam., 41 (2005), pp. 47-67. · Zbl 1123.70022
[5] S. Chaturantabut and D. C. Sorensen, {\it Nonlinear model reduction via discrete empirical interpolation}, SIAM J. Sci. Comput., 32 (2010), pp. 2737-2764. · Zbl 1217.65169
[6] J. Chin, J. Harting, S. Jha, P. V. Coveney, A. R. Porter, and S. M. Pickles, {\it Steering in computational science: Mesoscale modelling and simulation}, Appl. Numer. Math., 43 (2003), pp. 9-44.
[7] I. Chueshov, {\it Introduction to the Theory of Infinite-Dimensional Dissipative System}, Univ. Lect. Contemp. Math., ACTA, Kharkiv, Ukraine, 2002. · Zbl 1100.37047
[8] D. L. Donoho and C. Grimes, {\it Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data}, Proc. Natl. Acad. Sci. USA, 100 (2003), pp. 5591-5596. · Zbl 1130.62337
[9] A. Edelman, T. A. Arias, and S. T. Smith, {\it The geometry of algorithms with orthogonality constraints}, SIAM J. Matrix Anal. Appl., 20 (1998), pp. 303-353. · Zbl 0928.65050
[10] N. Fenichel, {\it Persistence and smoothness of invariant manifolds for flows}, Indiana Univ. Math. J., 21 (1972), pp. 193-226. · Zbl 0246.58015
[11] C. Foias, M. S. Jolly, I. G. Kevrekidis, G. R. Sell, and E. S. Titi, {\it On the computation of inertial manifolds}, Phys. Lett. A, 131 (1988), pp. 433-436.
[12] P. Glansdorff and I. Prigogine, {\it Thermodynamic Theory of Structure, Stability, and Fluctuations}, Wiley, New York, 1971. · Zbl 0246.73005
[13] P. Glösmann and E. Kreuzer, {\it Nonlinear system analysis with Karhunen-Loève transform}, Nonlinear Dynam., 41 (2005), pp. 111-128. · Zbl 1111.70019
[14] M. Hinze and S. Volkwein, {\it Proper orthogonal decomposition surrogate models for nonlinear dynamical systems: Error estimates and suboptimal control}, in Dimension Reduction of Large-Scale Systems, Lect. Notes Comput. Sci. Eng. 45, P. Benner, D. C. Sorensen, V. Mehrmann, T. J. Barth, M. Griebel, D. E. Keyes, R. M. Nieminen, D. Roose, and T. Schlick, eds., Springer, Berlin, Heidelberg, 2005, pp. 261-306. · Zbl 1079.65533
[15] M. W. Hirsch, {\it Differential Topology}, Springer-Verlag, New York, Heidelberg, 1976. · Zbl 0356.57001
[16] M. W. Hirsch, C. C. Pugh, and M. Shub, {\it Invariant Manifolds}, Springer-Verlag, Berlin, New York, 1977. · Zbl 0355.58009
[17] M. Kirby and R. Miranda, {\it Nonlinear reduction of high-dimensional dynamical systems via neural networks}, Phys. Rev. Lett., 72 (1994), pp. 1822-1825.
[18] S. Li, {\it Concise formulas for the area and volume of a hyperspherical cap}, Asian J. Math. Stat., 4 (2011), pp. 66-70.
[19] D. J. Lucia, P. S. Beran, and W. A. Silva, {\it Reduced-order modeling: New approaches for computational physics}, Progr. Aeros. Sci., 40 (2004), pp. 51-117.
[20] B. R. Noack, M. Schlegel, M. Morzynski, and G. Tadmor, {\it Galerkin method for nonlinear dynamics}, in Reduced-Order Modelling for Flow Control, CISM Courses and Lectures 528, B. R. Noack, M. Morzynski, and G. Tadmor, eds., Springer, Vienna, 2011, pp. 111-149. · Zbl 1273.76096
[21] G. Rega and H. Troger, {\it Dimension reduction of dynamical systems: Methods, models, applications}, Nonlinear Dynam., 41 (2005), pp. 1-15. · Zbl 1142.37320
[22] A. J. Roberts, {\it The utility of an invariant manifold description of the evolution of a dynamical system}, SIAM J. Math. Anal., 20 (1989), pp. 1447-1458. · Zbl 0679.34061
[23] J. C. Robinson, {\it Infinite-Dimensional Dynamical Systems}, Cambridge Texts Appl. Math. 28, Cambridge University Press, Cambridge, UK, 2001. · Zbl 0980.35001
[24] J. D. Rodriguez and L. Sirovich, {\it Low-dimensional dynamics for the complex Ginzburg-Landau equation}, Phys. D, 43 (1990), pp. 77-86. · Zbl 0723.76042
[25] O. E. Rössler, {\it An equation for continuous chaos}, Phys. Lett. A, 57 (1976), pp. 397-398. · Zbl 1371.37062
[26] S. T. Roweis and L. K. Saul, {\it Nonlinear dimensionality reduction by locally linear embedding}, Science, 290 (2000), pp. 2323-2326.
[27] C. W. Rowley, T. Colonius, and R. M. Murray, {\it Model reduction for compressible flows using POD and Galerkin projection}, Phys. D, 189 (2004), pp. 115-129. · Zbl 1098.76602
[28] L. Sirovich, {\it Turbulence and the dynamics of coherent structures. I - Coherent structures}, Quart. Appl. Math., 45 (1987), pp. 561-571. · Zbl 0676.76047
[29] L. Sirovich, {\it Turbulence and the dynamics of coherent structures. II - Symmetries and transformations}, Quart. Appl. Math., 45 (1987), pp. 573-582. · Zbl 0676.76047
[30] L. Sirovich, {\it Turbulence and the dynamics of coherent structures. III - Dynamics and scaling}, Quart. Appl. Math., 45 (1987), pp. 583-590. · Zbl 0676.76047
[31] A. C. Skeldon, {\it Dynamics of a parametrically excited double pendulum}, Phys. D, 75 (1994), pp. 541-558. · Zbl 0820.34020
[32] N. Smaoui, {\it Linear versus nonlinear dimensionality reduction of high-dimensional dynamical systems}, SIAM J. Sci. Comput., 25 (2004), pp. 2107-2125. · Zbl 1058.35098
[33] A. Steindl and H. Troger, {\it Methods for dimension reduction and their application in nonlinear dynamics}, Internat. J. Solids Structures, 38 (2001), pp. 2131-2147. · Zbl 1003.74032
[34] J. B. Tenenbaum, V. de Silva, and J. C. Langford, {\it A global geometric framework for nonlinear dimensionality reduction}, Science, 290 (2000), pp. 2319-2323.
[35] Z. Zhang and H. Zha, {\it Principal manifolds and nonlinear dimensionality reduction via local tangent space alignment}, SIAM J. Sci. Comput., 26 (2004), pp. 313-338. · Zbl 1077.65042
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.