×

Bounds on the number of rational points of algebraic hypersurfaces over finite fields, with applications to projective Reed-Muller codes. (English) Zbl 1348.11052

The authors build on the work of A. Sboui by studying the weights of the \(d\)-th order \(q\)-ary projective Reed-Muller codes \(\mathrm{PRM}(q,d,n)\), for small \(d\). This is accomplished by finding bounds on the number of points in algebraic curves and hypersurfaces in \(P^n(F_q)\), depending on the number of linear components contained in these objects.

MSC:

11G25 Varieties over finite and local fields
14G50 Applications to coding theory and cryptography of arithmetic geometry
94B05 Linear codes (general theory)
Full Text: DOI

References:

[1] A. Couvreur, An upper bound on the number of rational points of arbitrary projective varieties over finite fields,, preprint · Zbl 1369.11044
[2] S. R. Ghorpade, Étale cohomology, Lefschetz theorems and number of points of singular varieties over finite fields,, Moscow Math. J., 2, 589 (2002) · Zbl 1101.14017
[3] G. Lachaud, The parameters of projective Reed-Muller codes,, Discrete Math., 81, 217 (1990) · Zbl 0696.94015 · doi:10.1016/0012-365X(90)90155-B
[4] G. Lachaud, An overview of the number of points of algebraic sets over finite fields · Zbl 1408.14088 · doi:10.1016/j.jpaa.2015.05.008
[5] S. Lang, Number of points of varieties in finite fields,, Amer. J. Math., 76, 819 (1954) · Zbl 0058.27202
[6] F. Rodier, Les Arrangements Minimaux et Maximaux d’Hyperplans dans \(\mathbb P^n(\mathbb F_q)\),, C. R. Acad. Sc. Paris Ser. I, 344, 287 (2007) · Zbl 1163.14016 · doi:10.1016/j.crma.2007.01.006
[7] F. Rodier, Highest numbers of points of hypersurfaces and generalized Reed-Muller codes,, Finite Fields Appl., 14, 816 (2008) · Zbl 1175.94126 · doi:10.1016/j.ffa.2008.02.001
[8] A. Sboui, Second highest number of points of hypersurfaces in \(\mathbb F_q^n\),, Finite Fields Appl., 13, 444 (2007) · Zbl 1124.94014 · doi:10.1016/j.ffa.2005.11.002
[9] A. Sboui, Special numbers of rational points on hypersurfaces in the \(n\)-dimensional projective space over a finite field,, Discrete Math., 309, 5048 (2009) · Zbl 1187.51008 · doi:10.1016/j.disc.2009.03.021
[10] J.-P. Serre, Lettre à M. Tsfasman du 24 Juillet 1989, in Journées Arithmétiques de Luminy 17-21 Juillet 1989,, Astérisque, 198, 351 (1991)
[11] A. B. Sørensen, Projective Reed-Muller codes,, IEEE Trans. Inf. Theory, 37, 1567 (1991) · Zbl 0741.94016 · doi:10.1109/18.104317
[12] A. B. Sørensen, On the number of rational points on codimension-1 algebraic sets in \(\mathbb P^n(\mathbb F_q)\),, Discrete Math., 135, 321 (1994) · Zbl 0816.14009 · doi:10.1016/0012-365X(93)E0009-S
[13] L. Storme, MDS codes and arcs in \(PG(n, q)\) with \(q\) even: An improvement of the bounds of Bruen, Thas and Blokhuis,, J. Combin. Theory Ser. A, 62, 139 (1993) · Zbl 0771.51006 · doi:10.1016/0097-3165(93)90076-K
[14] L. Storme, Cyclic arcs in PG \((2,q)\),, J. Algebraic Combin., 3, 113 (1994) · Zbl 0791.51009 · doi:10.1023/A:1022454221497
[15] L. Storme, Arcs fixed by a large cyclic group,, Atti Sem. Mat. Fis. Univ. Modena, XLIII, 273 (1995) · Zbl 0852.51008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.