×

An upper bound on the number of rational points of arbitrary projective varieties over finite fields. (English) Zbl 1369.11044

The paper under review is concerned with a bound of the number of rational points of a projective variety defined over a finite field. Let \(\mathbb F_{q}\) be a finite field with \(q\)-elements and \(X \subset \mathbb P^{n}\) be a projective variety defined over \(\mathbb F_{q}\). Let \(X =X_{1} \cup \cdots \cup X_{r}\) be the decomposition of X where \(X_{i}\) is an irreducible component of \(X\) of dimension \(d_{i}\) and degree \(\delta _{i}\). We set \(\pi _{m} = | P^{m}(\mathbb F_{q})| = \frac{q^{m+1}-1}{q-1}\) and \(\pi_{m}=0\) if \(m<0\). The main result of this paper is following.
Theorem 3.1. \(|X(\mathbb F_{q})| \leq \sum _{i=1}^{r} \delta (\pi _{d_{i} - \pi _{2d_{i}-n}}) + \pi _{2D_{X} -n}\) where \(D_{X} = \max(d_{1} , \cdots , d_{r})\).
The complete intersection case of this theorem answers to the conjecture of S. R. Ghorpade and G. Lachaud [Mosc. Math. J. 2, No. 3, 589–631 (2002; Zbl 1101.14017)].

MSC:

11G25 Varieties over finite and local fields
14G05 Rational points
14G15 Finite ground fields in algebraic geometry

Citations:

Zbl 1101.14017

References:

[1] Aubry, Yves; Perret, Marc, Coverings of singular curves over finite fields, Manuscripta Math., 88, 4, 467-478 (1995) · Zbl 0862.11042 · doi:10.1007/BF02567835
[2] Aubry, Yves; Perret, Marc, On the characteristic polynomials of the Frobenius endomorphism for projective curves over finite fields, Finite Fields Appl., 10, 3, 412-431 (2004) · Zbl 1116.14012 · doi:10.1016/j.ffa.2003.09.005
[3] Beutelspacher, Albrecht, Blocking sets and partial spreads in finite projective spaces, Geom. Dedicata, 9, 4, 425-449 (1980) · Zbl 0377.50007 · doi:10.1007/BF00181559
[4] Boguslavsky, M., On the number of solutions of polynomial systems, Finite Fields Appl., 3, 4, 287-299 (1997) · Zbl 0924.11097 · doi:10.1006/ffta.1997.0186
[5] DG2 M. Datta and S. Ghorpade. Number of solutions of systems of homogeneous polynomials over finite fields, ArXiv:1507.03029, 2015.
[6] DG M. Datta and S. Ghorpade. On a conjecture of Tsfasman and an inequality of Serre for the number of points on hypersurfaces over finite fields, ArXiv:1503.03049, 2015. · Zbl 1348.14069
[7] Deligne, Pierre, La conjecture de Weil. I, Inst. Hautes \'Etudes Sci. Publ. Math., 43, 273-307 (1974) · Zbl 0287.14001
[8] Eisenbud, David; Harris, Joe, The geometry of schemes, Graduate Texts in Mathematics 197, x+294 pp. (2000), Springer-Verlag, New York · Zbl 0960.14002
[9] Fulton, William, Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics] 2, xiv+470 pp. (1998), Springer-Verlag, Berlin · Zbl 0885.14002 · doi:10.1007/978-1-4612-1700-8
[10] Ghorpade, Sudhir R.; Lachaud, Gilles, \'Etale cohomology, Lefschetz theorems and number of points of singular varieties over finite fields, Mosc. Math. J., 2, 3, 589-631 (2002) · Zbl 1101.14017
[11] Hartshorne, Robin, Algebraic geometry, xvi+496 pp. (1977), Springer-Verlag, New York-Heidelberg · Zbl 0367.14001
[12] Homma, Masaaki; Kim, Seon Jeong, Sziklai’s conjecture on the number of points of a plane curve over a finite field III, Finite Fields Appl., 16, 5, 315-319 (2010) · Zbl 1196.14030 · doi:10.1016/j.ffa.2010.05.001
[13] Homma, Masaaki; Kim, Seon Jeong, An elementary bound for the number of points of a hypersurface over a finite field, Finite Fields Appl., 20, 76-83 (2013) · Zbl 1271.14059 · doi:10.1016/j.ffa.2012.11.002
[14] Jungnickel, Dieter, Maximal partial spreads and translation nets of small deficiency, J. Algebra, 90, 1, 119-132 (1984) · Zbl 0548.05015 · doi:10.1016/0021-8693(84)90202-3
[15] Jungnickel, Dieter, Maximal partial spreads and transversal-free translation nets, J. Combin. Theory Ser. A, 62, 1, 66-92 (1993) · Zbl 0846.51005 · doi:10.1016/0097-3165(93)90072-G
[16] Lachaud, Gilles; Rolland, Robert, On the number of points of algebraic sets over finite fields, J. Pure Appl. Algebra, 219, 11, 5117-5136 (2015) · Zbl 1408.14088 · doi:10.1016/j.jpaa.2015.05.008
[17] Metsch, Klaus; Storme, L., Partial \(t\)-spreads in \({\rm PG}(2t+1,q)\), Des. Codes Cryptogr., 18, 1-3, 199-216 (1999) · Zbl 0964.51005 · doi:10.1023/A:1008305824113
[18] Serre, Jean-Pierre, Sur le nombre des points rationnels d’une courbe alg\'ebrique sur un corps fini, C. R. Acad. Sci. Paris S\'er. I Math., 296, 9, 397-402 (1983) · Zbl 0538.14015
[19] Serre, Jean-Pierre, Lettre \`“a M. Tsfasman, Ast\'”erisque, 198-200, 11, 351-353 (1992) (1991) · Zbl 0758.14008
[20] S{\o }rensen, Anders Bj{\ae }rt, On the number of rational points on codimension-\(1\) algebraic sets in \({\bf P}^n({\bf F}_q)\), Discrete Math., 135, 1-3, 321-334 (1994) · Zbl 0816.14009 · doi:10.1016/0012-365X(93)E0009-S
[21] St{\`“o}hr, Karl-Otto; Voloch, Jos{\'”e} Felipe, Weierstrass points and curves over finite fields, Proc. London Math. Soc. (3), 52, 1, 1-19 (1986) · Zbl 0593.14020 · doi:10.1112/plms/s3-52.1.1
[22] Sziklai, Peter, A bound on the number of points of a plane curve, Finite Fields Appl., 14, 1, 41-43 (2008) · Zbl 1185.14017 · doi:10.1016/j.ffa.2007.09.004
[23] Thas, Koen, On the number of points of a hypersurface in finite projective space (after J.-P. Serre), Ars Combin., 94, 183-190 (2010) · Zbl 1240.14010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.