×

Geodesics and shortest arcs of a special sub-Riemannian metric on the Lie group \(\mathrm{SL}(2)\). (English. Russian original) Zbl 1347.53028

Sib. Math. J. 57, No. 3, 411-424 (2016); translation from Sib. Mat. Zh. 57, No. 3, 527-542 (2016).
Summary: The authors found geodesics, shortest arcs, cut loci, and conjugate sets for some left-invariant sub-Riemannian metric on the Lie group \(\mathrm{SL}(2)\) that is right-invariant with respect to the Lie subgroup \(\mathrm{SO}(2)\subset\mathrm{SL}(2)\) (in other words, for invariant sub-Riemannian metrics on th weakly symmetric space \((\mathrm{SL}(2)\times\mathrm{SO}(2))/\mathrm{SO}(2))\).

MSC:

53C17 Sub-Riemannian geometry
22E30 Analysis on real and complex Lie groups
53C35 Differential geometry of symmetric spaces
53C22 Geodesics in global differential geometry
Full Text: DOI

References:

[1] Berestovskiĭ V. N., “Universal methods of the search of normal geodesics on Lie groups with left-invariant sub-Riemannian metric,” Sib. Math. J., 55, No. 5, 783-791 (2014). · Zbl 1311.53033 · doi:10.1134/S0037446614050012
[2] Boscain U. and Rossi F., “Invariant Carnot-Carátheodory metrics on <Emphasis Type=”Italic“>S3, <Emphasis Type=”Italic“>SO(3), <Emphasis Type=”Italic“>SL(2) and lens spaces,” SIAM J. Control Optim., 47, No. 4, 1851-1878 (2008). · Zbl 1170.53016 · doi:10.1137/070703727
[3] Berestovskiĭ V. N., “(Locally) shortest arcs of a special sub-Riemannian metric on the Lie group <Emphasis Type=”Italic“>SO0(2, 1),” St. Petersburg Math. J., 27, No. 1, 1-14 (2016). · Zbl 1335.53038 · doi:10.1090/spmj/1373
[4] Berestovskiĭ V. N. and Zubareva I. A., “Geodesics and shortest arcs of a special sub-Riemannian metric on the Lie group SO(3),” Sib. Math. J., 56, No. 4, 602-611 (2015). · Zbl 1327.53033
[5] Selberg A., “Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series,” J. Indian Math. Soc. (N.S.), 1, No. 4, 47-87 (1956). · Zbl 0072.08201
[6] Yakimova O. S., “Weakly symmetric Riemannian manifolds with a reductive isometry group,” Sb. Math., 195, No. 3-4, 599-614 (2004). · Zbl 1078.53043 · doi:10.1070/SM2004v195n04ABEH000817
[7] Berestovskiĭ V. N., “Homogeneous spaces with intrinsic metric. II,” Sib. Math. J., 30, No. 2, 180-191 (1989). · Zbl 0681.53029 · doi:10.1007/BF00971372
[8] Berestovskii V. N. and Gorbatsevich V. V., “Homogeneous spaces with inner metric and with integrable invariant distributions,” Anal. Math. Phys., 4, No. 4, 263-331 (2014). · Zbl 1316.53035 · doi:10.1007/s13324-014-0083-z
[9] Gantmacher F. R., The Theory of Matrices. 2 vols, Taylor and Francis, London (1959). · Zbl 0085.01001
[10] Vershik A. M. and Gershkovich V. Ya., “Nonholonomic dynamical systems. Geometry of distributions and variational problems,” in: Current Problems in Mathematics. Fundamental Trends. Vol. 16 [in Russian], VINITI, Moscow, 1987, pp.5-85 (Itogi Nauki i Tekhniki). · Zbl 0797.58007
[11] Gromoll D., Klingenberg W., and Meyer W., Riemannsche Geometrie im Grossen, Springer-Verlag, Berlin; New York (1968) (Lecture Notes in Mathematics, No. 55). · Zbl 0155.30701 · doi:10.1007/978-3-540-35901-2
[12] Berestovskii V. N. and Guijarro L., “A metric characterization of Riemannian submersions,” Ann. Global Anal. Geom., 18, No. 6, 577-588 (2000). · Zbl 0992.53025 · doi:10.1023/A:1006683922481
[13] Berestovskiĭ V. N. and Zubareva I. A., “Sub-Riemannian distance on Lie groups <Emphasis Type=”Italic“>SU(2) and <Emphasis Type=”Italic“>SO(3),” Mat. Tr., 18, No. 2, 3-21 (2015). · Zbl 1327.53033
[14] Cohn-Vossen S., “Existenz kürzester Wege,” Compositio Math., 3, 441-452 (1936). · JFM 62.0861.01
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.