×

Homogeneous manifolds with intrinsic metric. II. (English. Russian original) Zbl 0681.53029

Sib. Math. J. 30, No. 2, 180-191 (1989); translation from Sib. Mat. Zh. 30, No. 2(174), 14-28 (1989).
[For part I, cf. Sib. Math. J. 29, No.6, 887-897 (1988); translation from Sib. Mat. Zh. 29, No.6(172), 17-29 (1988; Zbl 0671.53036).]
This paper completes the investigation of the author in the domain of the metric structure of homogeneous manifolds with intrinsic metric. The main result is: the homogeneous spaces with intrinsic metric are exactly factor-spaces G/H of connected Lie groups G by their compact subgroups H equipped with an (invariant with respect to the canonical action G on G/H) Carnot-\(Caratheodory\)-\(Finsler\) metric. Such metric \(d_ c\) is given by a “completely nonholonomic” G-invariant distribution \(\Delta\) on \(M=G/H\) and by the G-invariant norm \(F=F(p,\cdot)\), \(p\in G/H\) on the linear subspace \(\Delta\) (p) of the tangent space \(M_ p\) to M in the point p. A necessary and sufficient condition that the G-invariant intrinsic metric on G/H is of Finsler type is found and is given in terms of the corresponding Lie algebras. Homogeneous Riemannian and Finsler manifolds are characterized and described.
Reviewer: A.Fleischer

MSC:

53C30 Differential geometry of homogeneous manifolds
53C70 Direct methods (\(G\)-spaces of Busemann, etc.)
53C20 Global Riemannian geometry, including pinching

Citations:

Zbl 0671.53036
Full Text: DOI

References:

[1] V. N. Berestovskii, ?Homogeneous manifolds with intrinsic metric. I,? Sib. Mat. Zh.,29, No. 6, 17-29 (1988). · Zbl 0655.03005 · doi:10.1007/BF00975011
[2] P. K. Rashevskii, ?Any two points of a completely nonholonomic space of admissible lines can be joined? Uch. Zap. Mosk. Gos. Pedagog. Inst. K. Libknekhta, Ser. Fiz.-Mat.,3, No. 2, 83-94 (1938).
[3] A. D. Aleksandrov, Intrinsic Geometry of Convex Surfaces [in Russian], Gostekhizdat, Moscow-Leningrad (1948). · Zbl 0038.35201
[4] J. Szenthe, ?A metric characterization of homogeneous riemannian manifolds,? Acta Sci. Math.,33, No. 1/2, 137-151 (1972). · Zbl 0241.53041
[5] S. Helgason, Differential Geometry and Symmetric spaces [Russian translation], Mir, Moscow (1964). · Zbl 0122.39901
[6] B. O’Neill, ?The fundamental equations of a submersion? Mich. Math. J.,13, 459-469 (1966). · Zbl 0145.18602 · doi:10.1307/mmj/1028999604
[7] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry [Russian translation], Vol. 1, Nauka, Moscow (1981). · Zbl 0526.53001
[8] H. Busemann and W. Myer, ?On the foundations of the calculus of variations,? Trans. Am. Math. Soc.,49, 173-198 (1941). · JFM 67.1036.03 · doi:10.1090/S0002-9947-1941-0003475-2
[9] H. Busemann, Geometry of Geodesics [Russian translation], Fizmatgiz, Moscow (1962). · Zbl 0112.37202
[10] E. Spanier, Algebraic Topology [Russian translation], Mir, Moscow (1971). · Zbl 0222.55001
[11] V. N. Berestovskii, ?Busemann homogeneous G-spaces,? Sib. Mat. Zh.,23, No. 2, 3-15 (1982).
[12] J. Szenthe, ?On the topological characterization of transitive Lie group actions,? Acta Sci. Math.,36, No. 3/4, 323-344 (1974). · Zbl 0269.57019
[13] S. Kobayashi and K. Nomizu, Foundation of Differential Geometry [Russian translation], Vol. 2, Nauka, Moscow (1981). · Zbl 0508.53002
[14] C. Chevalley, Theory of Lie Groups [Russian translation], Vol. 1, IL, Moscow (1948). · Zbl 0031.24803
[15] A. Alexandrow, ?Über eine Verallgemeinerung der Riemannische Geometrie,? Schrift. Inst. Math. Deutschen Akad. Wiss.,1, 33-84 (1957). · Zbl 0077.35702
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.