×

Discrete fractional diffusion equation. (English) Zbl 1345.65067

Summary: The tool of the discrete fractional calculus is introduced to discrete modeling of diffusion problem. A fractional time discretization diffusion model is presented in the Caputo-like delta’s sense. The numerical formula is given in form of the equivalent summation. Then, the diffusion concentration is discussed for various fractional difference orders. The discrete fractional model is a fractionization of the classical difference equation and can be more suitable to depict the random or discrete phenomena compared with fractional partial differential equations.

MSC:

65Q10 Numerical methods for difference equations
76R50 Diffusion
35R11 Fractional partial differential equations
39A14 Partial difference equations
26A33 Fractional derivatives and integrals
37M05 Simulation of dynamical systems
Full Text: DOI

References:

[1] Hamilton, J.D.: Time series analysis. Princeton University Press, Princeton (1994) · Zbl 0831.62061
[2] Agarwal, R.P.: Difference Equations and Inequalities: Theory, Methods, and Applications. Marcel Dekker, New York (1992) · Zbl 0925.39001
[3] Bohner, M., Peterson, A.: Dynamical Equations on Time Scales. Birkhauser, Boston (2001) · Zbl 0978.39001 · doi:10.1007/978-1-4612-0201-1
[4] Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999) · Zbl 0924.34008
[5] Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J.J.: Fractional Calculus Models and Numerical Methods. World Scientific, Singapore (2012) · Zbl 1248.26011
[6] Schneider, W., Wyss, W.: Fractional diffusion and wave equations. J. Math. Phys. 30, 134-144 (1989) · Zbl 0692.45004 · doi:10.1063/1.528578
[7] Mainardi, F.: Fractional relaxation-oscillation and fractional diffusion-wave phenomena. Chaos Solitons Fractals 7, 1461-1477 (1996) · Zbl 1080.26505 · doi:10.1016/0960-0779(95)00125-5
[8] Gorenflo, R., Mainardi, F.: Random walk models for space-fractional diffusion processes. Fract. Calc. Appl. Anal. 1, 167-191 (1998) · Zbl 0946.60039
[9] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1-77 (2000) · Zbl 0984.82032 · doi:10.1016/S0370-1573(00)00070-3
[10] Gorenflo, R., Mainardi, F., Moretti, D., Paradisi, P.: Time fractional diffusion: a discrete random walk approach. Nonlinear Dyn. 29, 129-143 (2002) · Zbl 1009.82016 · doi:10.1023/A:1016547232119
[11] Sun, H., Chen, W., Chen, Y.: Variable-order fractional differential operators in anomalous diffusion modeling. Physica A 388, 4586-4592 (2009) · doi:10.1016/j.physa.2009.07.024
[12] Chen, W., Sun, H., Zhang, X., Korosak, D.: Anomalous diffusion modeling by fractal and fractional derivatives. Comput. Math. Appl. 59, 1754-1758 (2010) · Zbl 1189.35355 · doi:10.1016/j.camwa.2009.08.020
[13] Huang, F., Liu, F.: The time fractional diffusion equation and the advection-dispersion equation. ANZIAM J. 46, 317-330 (2005) · Zbl 1072.35218 · doi:10.1017/S1446181100008282
[14] Caputo, M.: Linear models of dissipation whose \[Q\] Q is almost frequency independent-II. Geophys. J. Int. 13, 529-539 (1967) · doi:10.1111/j.1365-246X.1967.tb02303.x
[15] Liu, F., Meerschaert, M.M., McGough, R.J., Zhuang, P., Liu, Q.: Numerical methods for solving the multi-term time-fractional wave-diffusion equation. Fract. Calc. Appl. Anal. 16, 9-25 (2013) · Zbl 1312.65138 · doi:10.2478/s13540-013-0002-2
[16] Lin, Y., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225, 1533-1552 (2007) · Zbl 1126.65121 · doi:10.1016/j.jcp.2007.02.001
[17] Hristov, J.: Approximate solutions to fractional subdiffusion equations. Eur. Phys. J. Spec. Top. 193, 229-243 (2011) · doi:10.1140/epjst/e2011-01394-2
[18] Machado, J.A.T.: Analysis and design of fractional-order digital control systems. Syst. Anal. Model. Simul. 27, 107-122 (1997) · Zbl 0875.93154
[19] Machado, J.A.T.: Discrete-time fractional-order controllers. Fract. Calc. Appl. Anal. 4, 47-66 (2001) · Zbl 1111.93307
[20] Ortigueira, M.D., Matos, C.J.C., Piedade, M.S.: Fractional discrete-time signal processing: scale conversion and linear prediction. Nonlinear Dyn. 29, 173-190 (2002) · Zbl 1009.93074 · doi:10.1023/A:1016522226184
[21] Ortigueira, M.D., Trujillo, J.J.: Generalized Grunwald-Letnikov fractional derivative and its Laplace and Fourier transforms. J. Comput. Nonlinear Dyn. 6, 034501 (2011) · doi:10.1115/1.4003136
[22] Edelman, M., Tarasov, V.E.: Fractional standard map. Phys. Lett. A 374, 279-285 (2009) · Zbl 1235.70039 · doi:10.1016/j.physleta.2009.11.008
[23] Tarasov, V.E., Edelman, M.: Fractional dissipative standard map. Chaos 20, 023127 (2010) · Zbl 1311.34019 · doi:10.1063/1.3443235
[24] Pu, Y.F., Zhou, J.L., Yuan, X.: Fractional differential mask: a fractional differential-based approach for multiscale texture enhancement. IEEE Trans. Image Process. 19, 491-511 (2010) · Zbl 1371.94302 · doi:10.1109/TIP.2009.2035980
[25] Atici, F.M., Eloe, P.W.: A transform method in discrete fractional calculus. Int. J. Differ. Equ. 2, 165-176 (2007)
[26] Atici, F.M., Eloe, P.W.: Initial value problems in discrete fractional calculus. Proc. Am. Math. Soc. 137, 981-989 (2009) · Zbl 1166.39005 · doi:10.1090/S0002-9939-08-09626-3
[27] Anastassiou, G.A.: About Discrete Fractional Calculus with Inequalities, in: Intelligent Mathematics: Computational Analysis, pp. 575-585. Springer, Berlin (2011)
[28] Abdeljawad, T.: On Riemann and Caputo fractional differences. Comput. Math. Appl. 62, 1602-1611 (2011) · Zbl 1228.26008 · doi:10.1016/j.camwa.2011.03.036
[29] Wu, G.C., Baleanu, D.: Discrete fractional logistic map and its chaos. Nonlinear Dyn. 75, 283-287 (2014) · Zbl 1281.34121 · doi:10.1007/s11071-013-1065-7
[30] Wu, G.C., Baleanu, D., Zeng, S.D.: Discrete chaos in fractional sine and standard maps. Phys. Lett. A 378, 484-487 (2014) · Zbl 1331.37048 · doi:10.1016/j.physleta.2013.12.010
[31] Wu, G.C., Baleanu, D.: Chaos synchronization of the discrete fractional logistic map. Signal Process. 102, 96-99 (2014) · doi:10.1016/j.sigpro.2014.02.022
[32] Bastos, N.R.O., Ferreira, R.A.C., Torres, D.F.M.: Discrete-time fractional variational problems. Signal. Process. 91, 513-524 (2011) · Zbl 1203.94022 · doi:10.1016/j.sigpro.2010.05.001
[33] Ferreira, R.A.C., Torres, D.F.M.: Fractional \[h\] h-difference equations arising from the calculus of variations. Appl. Anal. Discrete Math. 5, 110-121 (2011) · Zbl 1289.39007 · doi:10.2298/AADM110131002F
[34] Mozyrska, D., Girejko, E.: Overview of Fractional \[h\] h-Difference Operators, Advances in Harmonic Analysis and Operator Theory. Springer Basel, Berlin (2013) · Zbl 1262.39024
[35] Mozyrska, D., Girejko, E., Wyrwas, M.: Fractional nonlinear systems with sequential operators. Cent. Eur. J. Phys. 11, 1295-1303 (2013) · Zbl 1286.93021 · doi:10.2478/s11534-013-0223-3
[36] Cheng, J.F.: The Theory of Fractional Difference Equations. Xiamen University Press, Xiamen (2011). (in Chinese)
[37] Agarwal, R.P., El-Sayed, A.M.A., Salman, S.M.: Fractional-order Chua’s system: discretization, bifurcation and chaos. Adv. Differ. Equ. 320, (2013) · Zbl 1391.39026
[38] Chen, F.L., Luo, X.N., Zhou, Y.: Existence results for nonlinear fractional difference equation. Adv. Differ. Equ. 713201 (2011) · Zbl 1207.39012
[39] Holm, M.T.: The Theory of Discrete Fractional Calculus: Development and Application, PhD Thesis. University of Nebraska-Lincoln, Lincoln, Nebraska (2011)
[40] Tadjeran, C., Meerschaert, M.M., Scheffer, H.P.: A second-order accurate numerical approximation for the fractional diffusion equation. J. Comput. Phys. 213, 205-213 (2006) · Zbl 1089.65089 · doi:10.1016/j.jcp.2005.08.008
[41] Scjerer, R., Kalla, S.L., Tang, Y.F., Huang, J.F.: The Grünwald-Letnikov method for fractional differential equations. Comput. Math. Appl. 62, 902-917 (2011) · Zbl 1228.65121 · doi:10.1016/j.camwa.2011.03.054
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.