×

Fractional dissipative standard map. (English) Zbl 1311.34019

Summary: Using kicked differential equations of motion with derivatives of noninteger orders, we obtain generalizations of the dissipative standard map. The main property of these generalized maps, which are called fractional maps, is long-term memory. The memory effect in the fractional maps means that their present state of evolution depends on all past states with special forms of weights. Already a small deviation of the order of derivative from the integer value corresponding to the regular dissipative standard map (small memory effects) leads to the qualitatively new behavior of the corresponding attractors. The fractional dissipative standard maps are used to demonstrate a new type of fractional attractors in the wide range of the fractional orders of derivatives.{
©2010 American Institute of Physics}

MSC:

34A08 Fractional ordinary differential equations
26A33 Fractional derivatives and integrals
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
34D45 Attractors of solutions to ordinary differential equations

References:

[1] DOI: 10.1016/0375-9601(78)90195-0 · doi:10.1016/0375-9601(78)90195-0
[2] DOI: 10.1016/0375-9601(78)90195-0 · doi:10.1016/0375-9601(78)90195-0
[3] Sagdeev R. Z., Nonlinear Physics: From the Pendulum to Turbulence and Chaos (1988) · Zbl 0709.58003
[4] Zaslavsky G. M., Hamiltonian Chaos and Fractional Dynamics (2005) · Zbl 1083.37002
[5] DOI: 10.1016/0370-1573(79)90023-1 · doi:10.1016/0370-1573(79)90023-1
[6] Schuster H. G., Deterministic Chaos. An Introduction, 2. ed. (1988) · Zbl 0707.58003
[7] Collet P., Iterated Maps on the Interval as Dynamical System (1980) · Zbl 0458.58002
[8] Samko S. G., Fractional Integrals and Derivatives Theory and Applications (1993) · Zbl 0818.26003
[9] Podlubny I., Fractional Differential Equations (1999) · Zbl 0924.34008
[10] Kilbas A. A., Theory and Application of Fractional Differential Equations (2006) · Zbl 1138.26300
[11] DOI: 10.1088/0031-8949/35/2/004 · Zbl 1063.37529 · doi:10.1088/0031-8949/35/2/004
[12] DOI: 10.1103/PhysRevA.44.2469 · doi:10.1103/PhysRevA.44.2469
[13] DOI: 10.1088/0951-7715/4/3/015 · Zbl 0736.58018 · doi:10.1088/0951-7715/4/3/015
[14] DOI: 10.1016/0375-9601(93)90005-K · doi:10.1016/0375-9601(93)90005-K
[15] DOI: 10.1016/0378-4371(93)90195-A · doi:10.1016/0378-4371(93)90195-A
[16] DOI: 10.1016/0378-4371(93)90195-A · doi:10.1016/0378-4371(93)90195-A
[17] DOI: 10.1063/1.2358632 · Zbl 1146.70335 · doi:10.1063/1.2358632
[18] DOI: 10.1063/1.2126806 · Zbl 1144.37425 · doi:10.1063/1.2126806
[19] DOI: 10.1088/1751-8113/41/43/435101 · Zbl 1151.37327 · doi:10.1088/1751-8113/41/43/435101
[20] DOI: 10.1103/PhysRevA.32.2994 · doi:10.1103/PhysRevA.32.2994
[21] DOI: 10.1063/1.2967851 · doi:10.1063/1.2967851
[22] DOI: 10.1090/trans2/046/11 · Zbl 0152.41905 · doi:10.1090/trans2/046/11
[23] DOI: 10.1090/trans2/046/11 · Zbl 0152.41905 · doi:10.1090/trans2/046/11
[24] DOI: 10.1088/1751-8113/42/46/465102 · Zbl 1192.26007 · doi:10.1088/1751-8113/42/46/465102
[25] DOI: 10.1016/j.physd.2008.03.037 · Zbl 1157.26310 · doi:10.1016/j.physd.2008.03.037
[26] DOI: 10.1142/p614 · doi:10.1142/p614
[27] Jonscher A. K., Universal Relaxation Law (1996)
[28] DOI: 10.1088/0022-3727/32/14/201 · doi:10.1088/0022-3727/32/14/201
[29] DOI: 10.1088/0953-8984/20/17/175223 · doi:10.1088/0953-8984/20/17/175223
[30] DOI: 10.1088/0953-8984/20/14/145212 · doi:10.1088/0953-8984/20/14/145212
[31] DOI: 10.1016/j.physleta.2009.11.008 · Zbl 1235.70039 · doi:10.1016/j.physleta.2009.11.008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.