×

A modified nonlinear POD method for order reduction based on transient time series. (English) Zbl 1345.34025

Summary: In this paper, a modified nonlinear proper orthogonal decomposition (POD) method based on transient time series on account of approximate inertial manifold method is proposed to reduce the order of the multiple degrees of freedom (DOFs) of a rotor system. A model of 23 DOFs rotor system comprising a pair of liquid-film bearing with pedestal looseness at one end is established by using the Newton’s second law. The multi-DOFs system is reduced to a two-DOFs model by using the modified POD method, which preserves the original dynamics behaviors. The comparison between the modified and the traditional POD method shows that the modified POD method is more effective especially in finding the bifurcation point and detecting the bifurcation diagrams and the mean square error of amplitudes curves. Finally, a relative error analysis is also carried out to evaluate the accuracy of the proposed order reduction method, indicating that the relative error is below 5% excluding the interval between original bifurcation point and the shift of the reduced system.

MSC:

34A45 Theoretical approximation of solutions to ordinary differential equations
34C23 Bifurcation theory for ordinary differential equations
34C60 Qualitative investigation and simulation of ordinary differential equation models
42C05 Orthogonal functions and polynomials, general theory of nontrigonometric harmonic analysis
65P30 Numerical bifurcation problems
Full Text: DOI

References:

[1] Rega, G., Troger, H.: Dimension reduction of dynamical systems: methods, models, applications. Nonlinear Dyn. 41, 1-15 (2005) · Zbl 1142.37320 · doi:10.1007/s11071-005-2790-3
[2] Steindl, A., Troger, H.: Methods for dimension reduction and their application in nonlinear dynamics. Int. J. Solids Struct. 38, 2131-2147 (2001) · Zbl 1003.74032 · doi:10.1016/S0020-7683(00)00157-8
[3] Knobloch, E., Wiesenfeld, K.A.: Bifurcation in fluctuating systems: the centre manifold approach. J. Stat. Phys. 33, 611-637 (1983) · Zbl 0587.58033 · doi:10.1007/BF01018837
[4] Verdugo, A., Rand, R.: Center manifold analysis of a DDE model of gene expression. Commun. Nonlinear Sci. Numer. Simul. 13, 1112-1120 (2008) · Zbl 1221.37197
[5] Sinou, J.J., Thouverez, F., Jezequel, L.: Centre manifold and multivariable approximants applied to non-linear stability analysis. Int. J. Non-Linear Mech. 38, 1421-1442 (2003) · Zbl 1128.74316 · doi:10.1016/S0020-7462(02)00080-X
[6] Sun, C.J., Lin, Y.P., Han, M.A.: Stability and Hopf bifurcation for an epidemic disease model with delay. Chaos Solitons Fractals 30, 204-216 (2006) · Zbl 1165.34048 · doi:10.1016/j.chaos.2005.08.167
[7] Song, Y.L., Wei, J.J., Yuan, Y.: Bifurcation analysis on a survival red blood cells model. J. Math. Anal. Appl. 316, 459-471 (2006) · Zbl 1105.34047 · doi:10.1016/j.jmaa.2005.04.051
[8] Nikolic, M., Rajkovic, M.: Bifurcations in nonlinear models of fluid-conveying pipes supported at both ends. J. Fluids Struct. 22, 173-195 (2006) · doi:10.1016/j.jfluidstructs.2005.09.009
[9] Nishida, T., Teramoto, Y., Yoshihara, H.: Hopf bifurcation in viscous incompressible flow down an inclined plane. J. Math. Fluid Mech. 7, 29-71 (2005) · Zbl 1065.35053
[10] Gentile, G., Mastropietro, V., Procesi, M.: Periodic solutions for completely resonant nonlinear wave equations with Dirichlet boundary conditions. Commun. Math. Phys. 256, 437-490 (2005) · Zbl 1094.35021 · doi:10.1007/s00220-004-1255-8
[11] Sandfry, R.A., Hall, C.D.: Bifurcations of relative equilibria of an oblate gyrostat with a discrete damper. Nonlinear Dyn. 48(3), 319-329 (2007) · Zbl 1180.70009 · doi:10.1007/s11071-006-9090-4
[12] Edriss, S.: On approximate inertial manifolds to the Navier-Stokes equations. J. Math. Anal. Appl. 149, 540-557 (1990) · Zbl 0723.35063
[13] Constantin, P., Foias, C.: Global Lyapunove exponents, Kaplan-Yorke formulas and the dimension of the attractors for 2D Navier-Stokes equations. Commun. Pure Appl. Math. 38, 1-27 (1985) · Zbl 0582.35092 · doi:10.1002/cpa.3160380102
[14] Constantin, P., Foias, C., Teman, R.: Attractors representing turbulent flows. Mem. Am. Math. Soc. 53, 1-65 (1985) · Zbl 0953.74518
[15] Foias, C., Teman, R.: Some analytic and geometric properties of the solutions of the Navier-Stokes equations. J. Math. Pures Appl. 58, 339-368 (1979) · Zbl 0454.35073
[16] Foial, C., Sell, G., Teman, R.: Inertial manifolds for nonlinear evolutionary equations. J. Differ. Equ. 73, 93-114 (1988) · Zbl 0582.35092
[17] Marion, M.: Approximate inertial manifolds for reaction-diffusion equations in high space dimension. Dyn. Differ. Equ. 1, 245-267 (1989) · Zbl 0702.35127
[18] Marion, M.: Approximate inertial manifolds for the Cahn-Hilliard equation. RAIRO Math. Model. Anal. Numer. 23, 463-488 (1989) · Zbl 0724.65122
[19] Yang, H.L., Radons, G.: Geometry of inertial manifolds probed via a Lyapunov projection method. Phys. Rev. Lett. 108, 154101 (2012) · Zbl 1094.35021
[20] Marion, M., Temam, R.: Nonlinear Galerkin methods. SIAM J. Numer Anal. 5, 1139-1157 (1989) · Zbl 0683.65083 · doi:10.1137/0726063
[21] Glosmann, P., Kreuzer, E.: Nonlinear system analysis with Karhunen-Loeve transform. Nonlinear Dyn. 41, 111-128 (2005) · Zbl 1111.70019 · doi:10.1007/s11071-005-2794-z
[22] Georgiou, I.T.: Invariant manifolds, nonclassical normal modes, and proper orthogonal modes in the dynamics of the flexible spherical pendulum. Nonlinear Dyn. 25, 3-31 (2001) · Zbl 1011.70021 · doi:10.1023/A:1012990329884
[23] Feldmann, U., Kreuzer, E., Pinto, F.: Dynamic diagnosis of railway tracks by means of Karhunen-Loeve transformation. Nonlinear Dyn. 22(2), 193-203 (2000) · Zbl 0973.70501 · doi:10.1023/A:1008342520851
[24] Kerschen, G., Golinval, J.C., Vakakis, A.F., Bergman, L.A.: The method of proper orthogonal decomposition for dynamical characterization and order reduction of mechanical systems: an overview. Nonlinear Dyn. 41, 147-169 (2005) · Zbl 1103.70011
[25] Kappagantu, R., Feeny, B.F.: Part 1: dynamical characterization of a frictionally exited beam. Nonlinear Dyn. 22(4), 317-333 (2000) · Zbl 0953.74518 · doi:10.1023/A:1008344005183
[26] Kappagantu, R., Feeny, B.F.: Part 2: proper orthogonal modal modeling of a frictionally excited beam. Nonlinear Dyn. 23, 1-11 (2000) · Zbl 1079.74550 · doi:10.1023/A:1008303406091
[27] Amabili, M., Touze, C.: Reduced-order models for nonlinear vibrations of fluid-filled circular cylindrical shells: comparison of POD and asymptotic nonlinear normal modes methods. J. Fluids Struct. 23(6), 885-903 (2007) · doi:10.1016/j.jfluidstructs.2006.12.004
[28] Liang, Y.C., Lee, H.P., Lim, S.P., Lin, W.Z., Lee, K.H., Wu, C.G.: Proper orthogonal decomposition and its applications, part I: theory. J. Sound Vib. 252(3), 527-544 (2002) · Zbl 1237.65040 · doi:10.1006/jsvi.2001.4041
[29] Liang, Y.C., Lin, W.Z., Lee, H.P., Lim, S.P., Lee, K.H., Sun, H.: Proper orthogonal decomposition and its applications, part II: model reduction for MEMS dynamical analysis. J. Sound Vib. 256(3), 515-532 (2002) · doi:10.1006/jsvi.2002.5007
[30] Terragni, F., Jose, M.V.: On the use of POD-based ROMs to analyze bifurcations in some dissipative systems. Phys. D 241, 1393-1405 (2012) · Zbl 1251.65169
[31] Couplet, M., Basdevant, C., Sagaut, P.: Calibrated reduced-order POD-Galerkin system for fluid flow modeling. J. Comput. Phys. 207, 192-220 (2005) · Zbl 1177.76283 · doi:10.1016/j.jcp.2005.01.008
[32] Sirisup, S., Karniadakis, G.E., Kevrekidis, I.G.: Equations-free/Galerkin-free POD assisted computation of incompressible flows. J. Comput. Phys. 207, 568-587 (2005) · Zbl 1213.76146 · doi:10.1016/j.jcp.2005.01.024
[33] Rapun, M.L., Vega, J.M.: Reduced order models based on local POD plus Galerkin projection. J. Comput. Phys. 229, 3046-3063 (2010) · Zbl 1187.65111 · doi:10.1016/j.jcp.2009.12.029
[34] Terragni, F., Valero, E., Vega, J.M.: Local POD plus Galerkin projection in the unsteady lid-driven cavity problem. SIAM J. Sci. Comput. 33, 3538-3561 (2011) · Zbl 1298.76121 · doi:10.1137/100816006
[35] Nayfeh, A.H., Balachandran, B.: Applied Nonlinear Dynamics: Analytical, Computational and Experimental Methods. Wiley, New York (1995) · Zbl 0848.34001 · doi:10.1002/9783527617548
[36] Chen, Y.S., Leung, A.Y.T.: Bifurcation and Chaos in Engineering. Springer, London (1998) · Zbl 0997.34500 · doi:10.1007/978-1-4471-1575-5
[37] Yu, H., Chen, Y.S., Cao, Q.J.: Bifurcation analysis for nonlinear multi-degree-of-freedom rotor system with liquid-film lubricated bearings. Appl. Math. Mech. Engl. Ed. 34(6), 777-790 (2013) · Zbl 1376.34018 · doi:10.1007/s10483-013-1706-9
[38] Teman, R.: Navier-Stokes Equations and Nonlinear Functional Analysis. SIAM, Philadelphia (1983) · Zbl 0522.35002
[39] Teman, R.: Navier-Stokes Equation, Theory and Numerical Analysis, 3rd edn. North-Holland, Amsterdam (1984) · Zbl 0568.35002
[40] Adiletta, G., Guido, A.R., Rossi, C.: Chaotic motions of a rigid rotor in short journal bearings. Nonlinear Dyn. 10, 251-269 (1996) · doi:10.1007/BF00045106
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.