×

Bifurcation analysis for nonlinear multi-degree-of-freedom rotor system with liquid-film lubricated bearings. (English) Zbl 1376.34018

Summary: The oil-film oscillation in a large rotating machinery is a complex high-dimensional nonlinear problem. In this paper, a high pressure rotor of an aero engine with a pair of liquid-film lubricated bearings is modeled as a twenty-two-degree-of-freedom nonlinear system by the Lagrange method. This high-dimensional nonlinear system can be reduced to a two-degree-of-freedom system preserving the oil-film oscillation property by introducing the modified proper orthogonal decomposition (POD) method. The efficiency of the method is shown by numerical simulations for both the original and reduced systems. The Chen-Longford (C-L) method is introduced to get the dynamical behaviors of the reduced system that reflect the natural property of the oil-film oscillation.

MSC:

34A34 Nonlinear ordinary differential equations and systems
35G50 Systems of nonlinear higher-order PDEs
76A20 Thin fluid films
76D05 Navier-Stokes equations for incompressible viscous fluids
37N10 Dynamical systems in fluid mechanics, oceanography and meteorology
Full Text: DOI

References:

[1] Gardner, M., Myers, C., and Savage, M. Analysis of limit-cycle response in fluid-film journal bearings using the method of multiple scales. The Quarterly Journal of Mechanics and Applied Mathematics, 38, 27-45 (1985) · Zbl 0555.76040 · doi:10.1093/qjmam/38.1.27
[2] Ehrich, F. F. Some observations of chaotic vibration phenomena in high speed rotor dynamics. Journal of Vibration and Acoustics, 113, 50-57 (1991) · doi:10.1115/1.2930154
[3] Brown, R. D. and Addison, P. Chaos in the unbalance response of journal bearings. Nonlinear Dynamics, 5, 421-432 (1994) · doi:10.1007/BF00052452
[4] Brancati, R. and Russo, M. On the stability of an unbalanced rigid rotor on lubricated journal bearing. Nonlinear Dynamics, 10, 175-185 (1996) · doi:10.1007/BF00045456
[5] Hollis, P. Hopf bifurcation to limit cycles in fluid film bearings. Journal of Tribology, 108(2), 184-189 (1986) · doi:10.1115/1.3261158
[6] Wang, J. K. and Khonsari, M. M. Application of Hopf bifurcation theory to rotor-bearing system with consideration of turbulent effects. Tribology International, 36, 701-714 (2006) · doi:10.1016/j.triboint.2005.07.031
[7] Zheng, H. P. and Chen, Y. S. A numerical method on estimation of stable regions of rotor systems supported on lubricated bearings. Applied Mathematics and Mechanics (English Edition), 23(10), 1115-1121 (2002) DOI 10.1007/BF02437659 · Zbl 1019.70500 · doi:10.1007/BF02437659
[8] Chen, Y. S. and Ding, Q. C-L method and its application to engineering nonlinear dynamical problems. Applied Mathematics and Mechanics (English Edition), 22(2), 144-153 (2001) DOI 10.1007/BF02437879 · Zbl 1033.70014 · doi:10.1023/A:1015576412107
[9] Choi, S. K. and Noah, S. T. Mode-locking and chaos in a Jeffcott rotor with bearing clearances. Journal of Applied Mechanics, 61(1), 131-138 (1994) · Zbl 0925.70278 · doi:10.1115/1.2901387
[10] Kim, Y. B. and Choi, S. K. A multiple harmonic balance method for the internal resonant vibration of a non-linear Jeffcott rotor. Journal of Sound and Vibration, 208, 745-761 (1997) · doi:10.1006/jsvi.1997.1221
[11] Kim, Y. B. and Noah, S. T. Quasi-periodic response and stability analysis for a non-linear Jeffcott rotor. Journal of Sound and Vibration, 190, 239-253 (1996) · doi:10.1006/jsvi.1996.0059
[12] Diken, H. Non-linear vibration analysis and subharmonic whirl frequencies of the Jeffcott rotor model. Journal of Sound and Vibration, 243, 117-125 (2001) · doi:10.1006/jsvi.2000.3394
[13] Zhu, C. S., Robb, D. A., and Ewins, D. J. Analysis of the multiple-solution response of a flexible rotor supported on non-linear squeeze film dampers. Journal of Sound and Vibration, 252, 389-408 (2002) · doi:10.1006/jsvi.2001.3910
[14] Wang, X. and Noah, S. Nonlinear dynamics of a magnetically supported rotor on safety auxiliary bearings. Journal of Vibration and Acoustics, 120, 596-606 (1998) · doi:10.1115/1.2893869
[15] Adiletta, G., Guido, A. R., and Rossi, C. Chaotic motions of a rigid rotor in short journal bearings. Nonlinear Dynamics, 10, 251-269 (1996) · doi:10.1007/BF00045106
[16] Adiletta, G., Guido, A. R., and Rossi, C. Nonlinear dynamics of a rigid unbalanced rotor in journal bearings, part I: theoretical analysis. Nonlinear Dynamics, 14, 57-87 (1997) · Zbl 0910.70008 · doi:10.1023/A:1008282014350
[17] Adiletta, G., Guido, A. R., and Rossi, C. Nonlinear dynamics of a rigid unbalanced rotor in journal bearings, part II: experimental analysis. Nonlinear Dynamics, 14, 157-189 (1997) · Zbl 0910.70008 · doi:10.1023/A:1008275231189
[18] Hurty, W. C. Vibration of structure systems by component mode synthesis. Journal of the Engineering Mechanics Division, ASCE, 86, 51-59 (1960)
[19] Gladwell, G. M. Branch mode analysis of vibrating systems. Journal of Sound and Vibration, 1, 41-59 (1964) · Zbl 0124.39303 · doi:10.1016/0022-460X(64)90006-9
[20] Nelson, H. D., Meacham, W. L., Fleming, D. P., and Kascak, A. F. Nonlinear analysis of rotorbearing system using component mode synthesis. Journal of Engineering for Power, 105, 606-614 (1983) · doi:10.1115/1.3227460
[21] Nataraj, C. and Nelson, H. D. Periodic solutions in rotor dynamic systems with nonlinear supports: a general approach. Journal of Vibration, Acoustics, Stress, and Reliability in Design, ASME, 111, 187-193 (1989) · doi:10.1115/1.3269840
[22] Jean, A. N. and Nelson, H. D. Periodic response investigation of large order non-linear rotor dynamic systems using collocation. Journal of Sound and Vibration, 143, 473-489 (1990) · doi:10.1016/0022-460X(90)90737-K
[23] Sundararajan, P. and Noah, S. T. An algorithm for response and stability of large order non-linear systems-application to rotor systems. Journal of Sound and Vibration, 214, 695-723 (1998) · doi:10.1006/jsvi.1998.1614
[24] Glosmann, P. and Kreuzer, E. Nonlinear system analysis with Karhunen-Loeve transform. Nolinear Dynamics, 41, 111-128 (2005) · Zbl 1111.70019 · doi:10.1007/s11071-005-2794-z
[25] Steindl, A. and Troger, H. Methods for dimension reduction and their application in nonlinear dynamics. International Journal of Solids and Structures, 38, 2131-2147 (2001) · Zbl 1003.74032 · doi:10.1016/S0020-7683(00)00157-8
[26] Kerschen, G., Feeny, B. F., and Golinval, J. C. On the exploitation of chaos to build reduced-order models. Computer Methods in Applied Mechanics and Engineering, 192, 1785-1795 (2003) · Zbl 1051.74022 · doi:10.1016/S0045-7825(03)00206-8
[27] Kappagantu, R. and Feeny, B. F. An “optimal” modal reduction of a system with frictional excitation. Journal of Sound and Vibration, 224, 863-877 (1999) · doi:10.1006/jsvi.1999.2165
[28] Chen, Y. S. and Leng, A. Y. T. Bifurcation and Chaos in Engineering, Springer-Verlag, London, 194-197 (1998) · Zbl 0997.34500 · doi:10.1007/978-1-4471-1575-5
[29] Golubisky, M. and Schaeffer, D. G. Singularities and Groups in Bifurcation Theory, Springer, New York (1985) · Zbl 0607.35004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.