×

On compact generation of deformed schemes. (English) Zbl 1345.14023

Summary: We obtain a theorem which allows to prove compact generation of derived categories of Grothendieck categories, based upon certain coverings by localizations. This theorem follows from an application of Rouquier’s cocovering theorem in the triangulated context, and it implies Neeman’s result on compact generation of quasi-compact separated schemes. We prove an application of our theorem to non-commutative deformations of such schemes, based upon a change from Koszul complexes to Chevalley-Eilenberg complexes.

MSC:

14F05 Sheaves, derived categories of sheaves, etc. (MSC2010)
18E30 Derived categories, triangulated categories (MSC2010)
14D15 Formal methods and deformations in algebraic geometry

References:

[1] Bökstedt, M.; Neeman, A., Homotopy limits in triangulated categories, Compos. Math., 86, 2, 209-234 (1993), MR 1214458 (94f:18008) · Zbl 0802.18008
[2] Bondal, A.; Van den Bergh, M., Generators and representability of functors in commutative and noncommutative geometry, Mosc. Math. J., 3, 1, 1-36 (2003), 258. MR MR1996800 (2004h:18009) · Zbl 1135.18302
[3] Bueso, J. L.; Jara, P.; Verschoren, A., Compatibility, stability, and sheaves, (Monographs and Textbooks in Pure and Applied Mathematics, vol. 185 (1995), Marcel Dekker Inc.: Marcel Dekker Inc. New York), MR MR1300631 (95i:16029) · Zbl 0815.16001
[5] De Deken, O.; Lowen, W., Abelian and derived deformations in the presence of \(Z\)-generating geometric helices, J. Noncommut. Geom., 5, 4, 477-505 (2011) · Zbl 1262.14017
[6] Gabriel, P., Des catégories abéliennes, Bull. Soc. Math. France, 90, 323-448 (1962), MR MR0232821 (38 #1144) · Zbl 0201.35602
[7] Keller, B., Deriving DG categories, Ann. Sci. École Norm. Sup. (4), 27, 1, 63-102 (1994), MR MR1258406 (95e:18010) · Zbl 0799.18007
[8] Keller, B.; Lowen, W., On Hochschild cohomology and Morita deformations, Int. Math. Res. Not. IMRN, 17, 3221-3235 (2009), MR 2534996 (2010j:16023) · Zbl 1221.18014
[9] Krause, H., On Neeman’s well generated triangulated categories, Doc. Math., 6, 121-126 (2001), (electronic). MR 1836046 (2002c:18008) · Zbl 0987.18012
[10] Krause, H., Localization theory for triangulated categories, (Triangulated Categories. Triangulated Categories, London Math. Soc. Lecture Note Ser., vol. 375 (2010), Cambridge Univ. Press: Cambridge Univ. Press Cambridge), 161-235, MR 2681709 · Zbl 1232.18012
[11] Lowen, W., Hochschild cohomology, the characteristic morphism and derived deformations, Compos. Math., 144, 6, 1557-1580 (2008), MR 2474321 (2009m:18016) · Zbl 1157.18007
[12] Lowen, W., Obstruction theory for objects in abelian and derived categories, Comm. Algebra, 33, 9, 3195-3223 (2005), MR 2175388 (2006k:18016) · Zbl 1099.18008
[13] Lowen, W., Algebroid prestacks and deformations of ringed spaces, Trans. Amer. Math. Soc., 360, 3, 1631-1660 (2008), (electronic). MR 2357708 (2008m:13024) · Zbl 1135.13008
[14] Lowen, W.; Van den Bergh, M., Deformation theory of abelian categories, Trans. Amer. Math. Soc., 358, 12, 5441-5483 (2006), (electronic). MR 2238922 (2008b:18016) · Zbl 1113.13009
[15] Murfet, D. S., Rouquier’s cocovering theorem and well-generated triangulated categories, J. K-Theory, 8, 1, 31-57 (2011) · Zbl 1252.18030
[16] Neeman, A., The Grothendieck duality theorem via Bousfield’s techniques and Brown representability, J. Amer. Math. Soc., 9, 1, 205-236 (1996), MR 1308405 (96c:18006) · Zbl 0864.14008
[17] Neeman, A., On the derived category of sheaves on a manifold, Doc. Math., 6, 483-488 (2001), (electronic). MR 1874232 (2002i:18011) · Zbl 1026.18006
[18] Neeman, A., Triangulated categories, (Annals of Mathematics Studies, vol. 148 (2001), Princeton University Press: Princeton University Press Princeton, NJ), MR MR1812507 (2001k:18010) · Zbl 0974.18008
[19] Rosenberg, A. L., Noncommutative schemes, Compos. Math., 112, 1, 93-125 (1998), MR 1622759 (99h:14002) · Zbl 0936.14002
[20] Rosenberg, A. L., The spectrum of abelian categories and reconstruction of schemes, (Rings, Hopf algebras, and Brauer groups (Antwerp/Brussels, 1996). Rings, Hopf algebras, and Brauer groups (Antwerp/Brussels, 1996), Lecture Notes in Pure and Appl. Math., vol. 197 (1998), Dekker: Dekker New York), 257-274, MR 1615928 (99d:18011) · Zbl 0898.18005
[21] Rouquier, R., Dimensions of triangulated categories, J. K-Theory, 1, 2, 193-256 (2008), MR 2434186 (2009i:18008) · Zbl 1165.18008
[22] Smith, S. P., Subspaces of non-commutative spaces, Trans. Amer. Math. Soc., 354, 6, 2131-2171 (2002), (electronic). MR 1885647 (2003f:14002) · Zbl 0998.14003
[23] Thomason, R.; Trobaugh, T., Higher algebraic K-theory of schemes and of derived categories, The Grothendieck Festschrift, 3, 247-435 (1990)
[25] Van Oystaeyen, F., Compatibility of kernel functors and localization functors, Bull. Soc. Math. Belg., 28, 2, 131-137 (1976), MR 561328 (81d:16003) · Zbl 0424.16004
[26] Van Oystaeyen, F. M.J.; Verschoren, A. H.M. J., Noncommutative algebraic geometry, (Lecture Notes in Mathematics, vol. 887 (1981), Springer-Verlag: Springer-Verlag Berlin), An introduction. MR MR639153 (85i:16006) · Zbl 0477.16001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.